Let $ F\left( x \right) $ be the anti-derivative of $ f\left( x \right)=\dfrac{1}{3+5\sin x+3\cos x}dx $ whose graph passes through the point $ \left( 0,0 \right) $ . Then $ F\left( \dfrac{\pi }{2} \right)-\dfrac{1}{5}\log \dfrac{8}{3}+1982 $ is equal to _____. \[\]
Answer
Verified
455.1k+ views
Hint: We integrate $ f\left( x \right) $ with respect to $ x $ by substituting $ u=\tan \dfrac{x}{2} $ and find the anti-derivative $ F\left( x \right) $ with integration constant $ c $ .We find $ c $ using satisfaction of the given point $ \left( 0,0 \right) $ in the graph of $ F\left( x \right) $ . We put $ x=\dfrac{\pi }{2} $ and simplify to get the result. \[\]
Complete step by step answer:
We know that anti-derivative, primitive function or indefinite integral of a function $ f $ is a differentiable function $ F $ whose derivative is equal to the original function $ f $ which means $ {{F}^{'}}=f $ . The process of finding integral is called integration and the original function $ f $ is called integrand. We write integration with respect to variable $ x $ as
\[\int{f\left( x \right)}dx=F\left( x \right)+c\]
We know from double angle formula of sine and cosine in terms tangent for some angle $ A $ as;
\[\begin{align}
& \sin 2A=\dfrac{2\tan A}{1+{{\tan }^{2}}A} \\
& \cos 2A=\dfrac{1-{{\tan }^{2}}A}{1+{{\tan }^{2}}A} \\
\end{align}\]
We are given the following original function
$ f\left( x \right)=\dfrac{1}{3+5\sin x+3\cos x} $
Let us integrate the above function by u-substitution method to find the anti-derivative $ F\left( x \right) $ .
$ F\left( x \right)=\int{f\left( x \right)dx}=\int{\dfrac{1}{3+5\sin x+3\cos x}dx} $
Let us have $ u=\tan \dfrac{x}{2} $ . We differentiate both sides with respect to $ x $ to have;
\[\begin{align}
& \dfrac{d}{dx}u=\dfrac{d}{dx}\tan \dfrac{x}{2} \\
& \Rightarrow \dfrac{du}{dx}=\dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2} \\
& \Rightarrow \dfrac{du}{\dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2}}=dx \\
\end{align}\]
We use the Pythagorean trigonometric identity $ {{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta $ to have;
\[\begin{align}
& \Rightarrow \dfrac{du}{\dfrac{1}{2}\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)}=dx \\
& \Rightarrow dx=\dfrac{2du}{1+{{u}^{2}}} \\
\end{align}\]
We use the double angle formula of sine and cosine in terms tangent for $ A=\dfrac{x}{2} $ to have;
$ \begin{align}
& \sin x=\dfrac{2\tan \dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}}=\dfrac{2u}{1+{{u}^{2}}} \\
& \cos x=\dfrac{1-{{\tan }^{2}}\dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}}=\dfrac{1-{{u}^{2}}}{1+{{u}^{2}}} \\
\end{align} $
We put $ \sin x,\cos x,dx $ in terms of $ u,du $ in the integrand to have
\[\begin{align}
& F\left( x \right)=\int{\dfrac{1}{3+5\left( \dfrac{2u}{1+{{u}^{2}}} \right)+3\left( \dfrac{1-{{u}^{2}}}{1+{{u}^{2}}} \right)}\times \dfrac{2du}{1+{{u}^{2}}}} \\
& \Rightarrow F\left( x \right)=\int{\dfrac{2du}{\dfrac{3+3{{u}^{2}}+10u+3-2\mathsf{}{{u}^{2}}}{1+{{u}^{2}}}\times \left( 1+{{u}^{2}} \right)}} \\
& \Rightarrow F\left( x \right)=\int{\dfrac{2du}{6+10u}} \\
& \Rightarrow F\left( x \right)=\int{\dfrac{du}{3+5u}} \\
\end{align}\]
We take 5 multiply in the numerator and the denominator of the integrand and have;
\[\begin{align}
& \Rightarrow F\left( x \right)=\dfrac{1}{5}\int{\dfrac{5du}{\left( 5u+3 \right)}} \\
& \Rightarrow F\left( x \right)=\dfrac{1}{5}\log \left( 5u+3 \right)+c \\
& \Rightarrow F\left( x \right)=\dfrac{1}{5}\log \left( 5\tan \dfrac{x}{2}+3 \right)+c \\
\end{align}\]
Here $ c $ is an arbitrary integration constant. We are given that graph of $ F\left( x \right) $ passes through $ \left( 0,0 \right) $ . So we have
\[\begin{align}
& F\left( 0 \right)=0 \\
& \Rightarrow \dfrac{1}{5}\log \left( 5\tan \dfrac{0}{2}+3 \right)+c=0 \\
& \Rightarrow c=\dfrac{-\log 3}{5} \\
\end{align}\]
So we have the anti-derivative function as
\[F\left( x \right)=\dfrac{1}{5}\log \left( 5\tan \dfrac{x}{2}+3 \right)-\dfrac{\log 3}{5}\]
We put $ x=\dfrac{\pi }{2} $ in $ F\left( x \right) $ to have;
\[\begin{align}
& F\left( \dfrac{\pi }{2} \right)=\dfrac{1}{5}\log \left( 5\tan \dfrac{\dfrac{\pi }{2}}{2}+3 \right)-\dfrac{\log 3}{5} \\
& \Rightarrow F\left( \dfrac{\pi }{2} \right)=\dfrac{1}{5}\log \left( 5\tan \dfrac{\pi }{4}+3 \right)-\dfrac{\log 3}{5} \\
& \Rightarrow F\left( \dfrac{\pi }{2} \right)=\dfrac{1}{5}\log \left( 5\cdot 1+3 \right)-\dfrac{\log 3}{5} \\
& \Rightarrow F\left( \dfrac{\pi }{2} \right)=\dfrac{1}{5}\left( \log 8-\log 3 \right) \\
\end{align}\]
We use logarithmic identity of quotient $ \log \left( \dfrac{a}{b} \right)=\log a-\log b $ in the above step to have;
\[\begin{align}
& \Rightarrow F\left( \dfrac{\pi }{2} \right)=\dfrac{1}{5}\log \left( \dfrac{8}{3} \right) \\
& \Rightarrow F\left( \dfrac{\pi }{2} \right)-\dfrac{1}{5}\log \dfrac{8}{3}=0 \\
\end{align}\]
We add 1982 both sides of the above step to have;
\[\Rightarrow F\left( \dfrac{\pi }{2} \right)-\dfrac{1}{5}\log \dfrac{8}{3}+1982=1982\]
So the answer is 1982. \[\]
Note:
We should remember the integral identity $ \int{\dfrac{{{f}^{'}}\left( x \right)}{f\left( x \right)}dx=\log \left| f\left( x \right) \right|}+c $ . We note that integral remains same if we change the variable. The derivative of the function geometrically represents the slope of the tangent at any point; the anti-derivative represents the area under the curve. We must be careful of the confusion between sine double angle formula and tangent double angle formula which is given by $ \tan 2A=\dfrac{2\tan A}{1-{{\tan }^{2}}A} $ .
Complete step by step answer:
We know that anti-derivative, primitive function or indefinite integral of a function $ f $ is a differentiable function $ F $ whose derivative is equal to the original function $ f $ which means $ {{F}^{'}}=f $ . The process of finding integral is called integration and the original function $ f $ is called integrand. We write integration with respect to variable $ x $ as
\[\int{f\left( x \right)}dx=F\left( x \right)+c\]
We know from double angle formula of sine and cosine in terms tangent for some angle $ A $ as;
\[\begin{align}
& \sin 2A=\dfrac{2\tan A}{1+{{\tan }^{2}}A} \\
& \cos 2A=\dfrac{1-{{\tan }^{2}}A}{1+{{\tan }^{2}}A} \\
\end{align}\]
We are given the following original function
$ f\left( x \right)=\dfrac{1}{3+5\sin x+3\cos x} $
Let us integrate the above function by u-substitution method to find the anti-derivative $ F\left( x \right) $ .
$ F\left( x \right)=\int{f\left( x \right)dx}=\int{\dfrac{1}{3+5\sin x+3\cos x}dx} $
Let us have $ u=\tan \dfrac{x}{2} $ . We differentiate both sides with respect to $ x $ to have;
\[\begin{align}
& \dfrac{d}{dx}u=\dfrac{d}{dx}\tan \dfrac{x}{2} \\
& \Rightarrow \dfrac{du}{dx}=\dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2} \\
& \Rightarrow \dfrac{du}{\dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2}}=dx \\
\end{align}\]
We use the Pythagorean trigonometric identity $ {{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta $ to have;
\[\begin{align}
& \Rightarrow \dfrac{du}{\dfrac{1}{2}\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)}=dx \\
& \Rightarrow dx=\dfrac{2du}{1+{{u}^{2}}} \\
\end{align}\]
We use the double angle formula of sine and cosine in terms tangent for $ A=\dfrac{x}{2} $ to have;
$ \begin{align}
& \sin x=\dfrac{2\tan \dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}}=\dfrac{2u}{1+{{u}^{2}}} \\
& \cos x=\dfrac{1-{{\tan }^{2}}\dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}}=\dfrac{1-{{u}^{2}}}{1+{{u}^{2}}} \\
\end{align} $
We put $ \sin x,\cos x,dx $ in terms of $ u,du $ in the integrand to have
\[\begin{align}
& F\left( x \right)=\int{\dfrac{1}{3+5\left( \dfrac{2u}{1+{{u}^{2}}} \right)+3\left( \dfrac{1-{{u}^{2}}}{1+{{u}^{2}}} \right)}\times \dfrac{2du}{1+{{u}^{2}}}} \\
& \Rightarrow F\left( x \right)=\int{\dfrac{2du}{\dfrac{3+3{{u}^{2}}+10u+3-2\mathsf{}{{u}^{2}}}{1+{{u}^{2}}}\times \left( 1+{{u}^{2}} \right)}} \\
& \Rightarrow F\left( x \right)=\int{\dfrac{2du}{6+10u}} \\
& \Rightarrow F\left( x \right)=\int{\dfrac{du}{3+5u}} \\
\end{align}\]
We take 5 multiply in the numerator and the denominator of the integrand and have;
\[\begin{align}
& \Rightarrow F\left( x \right)=\dfrac{1}{5}\int{\dfrac{5du}{\left( 5u+3 \right)}} \\
& \Rightarrow F\left( x \right)=\dfrac{1}{5}\log \left( 5u+3 \right)+c \\
& \Rightarrow F\left( x \right)=\dfrac{1}{5}\log \left( 5\tan \dfrac{x}{2}+3 \right)+c \\
\end{align}\]
Here $ c $ is an arbitrary integration constant. We are given that graph of $ F\left( x \right) $ passes through $ \left( 0,0 \right) $ . So we have
\[\begin{align}
& F\left( 0 \right)=0 \\
& \Rightarrow \dfrac{1}{5}\log \left( 5\tan \dfrac{0}{2}+3 \right)+c=0 \\
& \Rightarrow c=\dfrac{-\log 3}{5} \\
\end{align}\]
So we have the anti-derivative function as
\[F\left( x \right)=\dfrac{1}{5}\log \left( 5\tan \dfrac{x}{2}+3 \right)-\dfrac{\log 3}{5}\]
We put $ x=\dfrac{\pi }{2} $ in $ F\left( x \right) $ to have;
\[\begin{align}
& F\left( \dfrac{\pi }{2} \right)=\dfrac{1}{5}\log \left( 5\tan \dfrac{\dfrac{\pi }{2}}{2}+3 \right)-\dfrac{\log 3}{5} \\
& \Rightarrow F\left( \dfrac{\pi }{2} \right)=\dfrac{1}{5}\log \left( 5\tan \dfrac{\pi }{4}+3 \right)-\dfrac{\log 3}{5} \\
& \Rightarrow F\left( \dfrac{\pi }{2} \right)=\dfrac{1}{5}\log \left( 5\cdot 1+3 \right)-\dfrac{\log 3}{5} \\
& \Rightarrow F\left( \dfrac{\pi }{2} \right)=\dfrac{1}{5}\left( \log 8-\log 3 \right) \\
\end{align}\]
We use logarithmic identity of quotient $ \log \left( \dfrac{a}{b} \right)=\log a-\log b $ in the above step to have;
\[\begin{align}
& \Rightarrow F\left( \dfrac{\pi }{2} \right)=\dfrac{1}{5}\log \left( \dfrac{8}{3} \right) \\
& \Rightarrow F\left( \dfrac{\pi }{2} \right)-\dfrac{1}{5}\log \dfrac{8}{3}=0 \\
\end{align}\]
We add 1982 both sides of the above step to have;
\[\Rightarrow F\left( \dfrac{\pi }{2} \right)-\dfrac{1}{5}\log \dfrac{8}{3}+1982=1982\]
So the answer is 1982. \[\]
Note:
We should remember the integral identity $ \int{\dfrac{{{f}^{'}}\left( x \right)}{f\left( x \right)}dx=\log \left| f\left( x \right) \right|}+c $ . We note that integral remains same if we change the variable. The derivative of the function geometrically represents the slope of the tangent at any point; the anti-derivative represents the area under the curve. We must be careful of the confusion between sine double angle formula and tangent double angle formula which is given by $ \tan 2A=\dfrac{2\tan A}{1-{{\tan }^{2}}A} $ .
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE