Answer
Verified
496.8k+ views
Hint: In this question we have been given a function f(x) which is defined in a certain interval and we have to find the odd extension of f(x) in the interval [-4, 4]. Odd extension means that the function breaks into a piecewise function which is defined over a specific interval, so simply find the breaking point of the given f(x) in the interval in which the odd extension is to be taken out.
Complete step-by-step answer:
Given function
$f\left( x \right) = {e^x} + \sin x,{\text{ }}x \in \left[ { - 4,0} \right]$
Now we have to find out the odd extension of f(x) in the interval [-4, 4]
According to odd extension property the function break into piecewise function which is defined as in the interval [-a, a]
The odd extension of f(x) is the function
\[{f_o}\left( x \right) = \left\{
f\left( x \right),{\text{ }}x \in \left[ { - a,0} \right] \\
- f\left( { - x} \right),{\text{ }}x \in \left[ {0,a} \right] \\
\right.\] So, use this property to calculate the odd extension of the given function in the interval [-4, 4]
$f\left( x \right) = {e^x} + \sin x,{\text{ }}x \in \left[ { - 4,0} \right]$
Now replace x with (-x) we have,
$f\left( { - x} \right) = {e^{ - x}} + \sin \left( { - x} \right)$
Now as we know $\sin \left( { - \theta } \right) = - \sin \theta $ so, use this property in the above equation we have,
$f\left( { - x} \right) = {e^{ - x}} - \sin x$
Now multiply by (-) in above equation we have,
$ - f\left( { - x} \right) = - \left( {{e^{ - x}} - \sin x} \right) = - {e^{ - x}} + \sin x$
$ - f\left( { - x} \right) = - {e^{ - x}} + \sin x,{\text{ }}x \in \left[ {0,4} \right]$
Hence the odd extension of the given function in the interval [-4, 4] is
\[{f_o}\left( x \right) = \left\{
{e^x} + \sin x,{\text{ }}x \in \left[ { - 4,0} \right] \\
- {e^{ - x}} + \sin x,{\text{ }}x \in \left[ {0,4} \right] \\
\right.\]
Hence option (b) is correct.
Note – Whenever we face such type of problems the key concept is to have the basic understanding of the odd extension defined over a period of interval, make sure that the interval given is only a subset of the domain of the given function otherwise there may arise a case even that the function is not defined. These concepts will help you get on the right track to get the answer.
Complete step-by-step answer:
Given function
$f\left( x \right) = {e^x} + \sin x,{\text{ }}x \in \left[ { - 4,0} \right]$
Now we have to find out the odd extension of f(x) in the interval [-4, 4]
According to odd extension property the function break into piecewise function which is defined as in the interval [-a, a]
The odd extension of f(x) is the function
\[{f_o}\left( x \right) = \left\{
f\left( x \right),{\text{ }}x \in \left[ { - a,0} \right] \\
- f\left( { - x} \right),{\text{ }}x \in \left[ {0,a} \right] \\
\right.\] So, use this property to calculate the odd extension of the given function in the interval [-4, 4]
$f\left( x \right) = {e^x} + \sin x,{\text{ }}x \in \left[ { - 4,0} \right]$
Now replace x with (-x) we have,
$f\left( { - x} \right) = {e^{ - x}} + \sin \left( { - x} \right)$
Now as we know $\sin \left( { - \theta } \right) = - \sin \theta $ so, use this property in the above equation we have,
$f\left( { - x} \right) = {e^{ - x}} - \sin x$
Now multiply by (-) in above equation we have,
$ - f\left( { - x} \right) = - \left( {{e^{ - x}} - \sin x} \right) = - {e^{ - x}} + \sin x$
$ - f\left( { - x} \right) = - {e^{ - x}} + \sin x,{\text{ }}x \in \left[ {0,4} \right]$
Hence the odd extension of the given function in the interval [-4, 4] is
\[{f_o}\left( x \right) = \left\{
{e^x} + \sin x,{\text{ }}x \in \left[ { - 4,0} \right] \\
- {e^{ - x}} + \sin x,{\text{ }}x \in \left[ {0,4} \right] \\
\right.\]
Hence option (b) is correct.
Note – Whenever we face such type of problems the key concept is to have the basic understanding of the odd extension defined over a period of interval, make sure that the interval given is only a subset of the domain of the given function otherwise there may arise a case even that the function is not defined. These concepts will help you get on the right track to get the answer.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE