Answer
Verified
396.9k+ views
Hint: Type of questions are based on the function and differentiation. Which asks for both. As in this question one function is given, and we had to find out the differentiation of the inverse of the given function. So for this first we will find out the inverse of a given function, which states to find the inverse of function, we will replace ‘x’ with ‘y’ and ‘y’ with ‘x’ in the given function, and then find the value of y. And then we will simply differentiate it.
Complete step by step answer:
So, the given function in the question i.e. $f(x)=\dfrac{({{x}^{2}}-x)}{({{x}^{2}}+2x)}$, to find the inversed of given, we will replace ‘x’ with ;y; and ‘y’ with ‘x’ in whole given function. So the function we will get will be;
\[\begin{align}
& f(x)=\dfrac{({{x}^{2}}-x)}{({{x}^{2}}+2x)} \\
& y=\dfrac{({{x}^{2}}-x)}{({{x}^{2}}+2x)} \\
& x=\dfrac{({{y}^{2}}-y)}{({{y}^{2}}+2y)} \\
\end{align}\]
Now we had to find out the value of ‘y’ from the above equation, so on solving we will get;
\[\begin{align}
& x=\dfrac{({{y}^{2}}-y)}{({{y}^{2}}+2y)} \\
& x=\dfrac{y(y-1)}{y(y+2)} \\
& x=\dfrac{(y-1)}{(y+2)} \\
& \dfrac{y+2}{y-1}=\dfrac{1}{x} \\
\end{align}\]
Now subtracting 1 from L.H.S and R.H.S side, we will get;
\[\begin{align}
& \dfrac{y+2}{y-1}=\dfrac{1}{x} \\
& \dfrac{y+2}{y-1}-1=\dfrac{1}{x}-1 \\
& \dfrac{y+2-(y-1)}{y-1}=\dfrac{1-x}{x} \\
& \dfrac{3}{y-1}=\dfrac{1-x}{x} \\
& \dfrac{3x}{1-x}=y-1 \\
& \dfrac{3x}{1-x}+1=y \\
& \dfrac{2x+1}{1-x}=y \\
\end{align}\]
So, ${{f}^{-1}}\left( x \right)=\dfrac{2x+1}{1-x}$
Now, we had to differentiate it. Since it is in the$\dfrac{\text{I}}{\text{II}}$form, which can be differentiated by the quotient rule, which says that $\dfrac{d\left[ \dfrac{\text{I}}{\text{II}} \right]}{dx}=\dfrac{\text{II}\dfrac{d\left( \text{I} \right)}{dx}-\text{I}\dfrac{d\left( \text{II} \right)}{dx}}{^{\mathop{\left( \text{II} \right)}^{2}}}$, comparing it with our ${{f}^{-1}}\left( x \right)=\dfrac{2x+1}{1-x}$, $\text{I=2x+1}$and $\text{II=1-x}$. So now differentiating it with according to the formula we will get;
\[\begin{align}
& \dfrac{d\left[ \dfrac{\text{I}}{\text{II}} \right]}{dx}=\dfrac{\text{II}\dfrac{d\left( \text{I} \right)}{dx}-\text{I}\dfrac{d\left( \text{II} \right)}{dx}}{^{\mathop{\left( \text{II} \right)}^{2}}} \\
& \dfrac{d\left[ \dfrac{2x+1}{1-x} \right]}{dx}=\dfrac{\left( 1-x \right)\dfrac{d\left( 2x+1 \right)}{dx}-\left( 2x+1 \right)\dfrac{d\left( 1-x \right)}{dx}}{^{\mathop{\left( 1-x \right)}^{2}}} \\
& \dfrac{d\left[ \dfrac{2x+1}{1-x} \right]}{dx}=\dfrac{\left( 1-x \right)(2)-\left( 2x+1 \right)(-1)}{^{\mathop{\left( 1-x \right)}^{2}}} \\
& \dfrac{d\left[ \dfrac{2x+1}{1-x} \right]}{dx}=\dfrac{\left( 2-2x \right)-\left( -2x-1 \right)}{^{\mathop{\left( 1-x \right)}^{2}}} \\
& \dfrac{d\left[ \dfrac{2x+1}{1-x} \right]}{dx}=\dfrac{2-2x+2x+1}{^{\mathop{\left( 1-x \right)}^{2}}} \\
& \dfrac{d\left[ \dfrac{2x+1}{1-x} \right]}{dx}=\dfrac{3}{^{\mathop{\left( 1-x \right)}^{2}}} \\
& \dfrac{d\left[ {{f}^{-1}}\left( x \right) \right]}{dx}=\dfrac{3}{^{\mathop{\left( 1-x \right)}^{2}}} \\
\end{align}\]
So, \[\dfrac{d\left[ {{f}^{-1}}\left( x \right) \right]}{dx}=\dfrac{3}{^{\mathop{\left( 1-x \right)}^{2}}}\]
So, the correct answer is “Option B”.
Note: To solve such a question you should very well know how to differentiate the basic function. And be patient to apply the quotient rule formula while differentiating, that in the denominator we will have a square of $\text{II}$which is $\text{1-x}$ in our case.
Complete step by step answer:
So, the given function in the question i.e. $f(x)=\dfrac{({{x}^{2}}-x)}{({{x}^{2}}+2x)}$, to find the inversed of given, we will replace ‘x’ with ;y; and ‘y’ with ‘x’ in whole given function. So the function we will get will be;
\[\begin{align}
& f(x)=\dfrac{({{x}^{2}}-x)}{({{x}^{2}}+2x)} \\
& y=\dfrac{({{x}^{2}}-x)}{({{x}^{2}}+2x)} \\
& x=\dfrac{({{y}^{2}}-y)}{({{y}^{2}}+2y)} \\
\end{align}\]
Now we had to find out the value of ‘y’ from the above equation, so on solving we will get;
\[\begin{align}
& x=\dfrac{({{y}^{2}}-y)}{({{y}^{2}}+2y)} \\
& x=\dfrac{y(y-1)}{y(y+2)} \\
& x=\dfrac{(y-1)}{(y+2)} \\
& \dfrac{y+2}{y-1}=\dfrac{1}{x} \\
\end{align}\]
Now subtracting 1 from L.H.S and R.H.S side, we will get;
\[\begin{align}
& \dfrac{y+2}{y-1}=\dfrac{1}{x} \\
& \dfrac{y+2}{y-1}-1=\dfrac{1}{x}-1 \\
& \dfrac{y+2-(y-1)}{y-1}=\dfrac{1-x}{x} \\
& \dfrac{3}{y-1}=\dfrac{1-x}{x} \\
& \dfrac{3x}{1-x}=y-1 \\
& \dfrac{3x}{1-x}+1=y \\
& \dfrac{2x+1}{1-x}=y \\
\end{align}\]
So, ${{f}^{-1}}\left( x \right)=\dfrac{2x+1}{1-x}$
Now, we had to differentiate it. Since it is in the$\dfrac{\text{I}}{\text{II}}$form, which can be differentiated by the quotient rule, which says that $\dfrac{d\left[ \dfrac{\text{I}}{\text{II}} \right]}{dx}=\dfrac{\text{II}\dfrac{d\left( \text{I} \right)}{dx}-\text{I}\dfrac{d\left( \text{II} \right)}{dx}}{^{\mathop{\left( \text{II} \right)}^{2}}}$, comparing it with our ${{f}^{-1}}\left( x \right)=\dfrac{2x+1}{1-x}$, $\text{I=2x+1}$and $\text{II=1-x}$. So now differentiating it with according to the formula we will get;
\[\begin{align}
& \dfrac{d\left[ \dfrac{\text{I}}{\text{II}} \right]}{dx}=\dfrac{\text{II}\dfrac{d\left( \text{I} \right)}{dx}-\text{I}\dfrac{d\left( \text{II} \right)}{dx}}{^{\mathop{\left( \text{II} \right)}^{2}}} \\
& \dfrac{d\left[ \dfrac{2x+1}{1-x} \right]}{dx}=\dfrac{\left( 1-x \right)\dfrac{d\left( 2x+1 \right)}{dx}-\left( 2x+1 \right)\dfrac{d\left( 1-x \right)}{dx}}{^{\mathop{\left( 1-x \right)}^{2}}} \\
& \dfrac{d\left[ \dfrac{2x+1}{1-x} \right]}{dx}=\dfrac{\left( 1-x \right)(2)-\left( 2x+1 \right)(-1)}{^{\mathop{\left( 1-x \right)}^{2}}} \\
& \dfrac{d\left[ \dfrac{2x+1}{1-x} \right]}{dx}=\dfrac{\left( 2-2x \right)-\left( -2x-1 \right)}{^{\mathop{\left( 1-x \right)}^{2}}} \\
& \dfrac{d\left[ \dfrac{2x+1}{1-x} \right]}{dx}=\dfrac{2-2x+2x+1}{^{\mathop{\left( 1-x \right)}^{2}}} \\
& \dfrac{d\left[ \dfrac{2x+1}{1-x} \right]}{dx}=\dfrac{3}{^{\mathop{\left( 1-x \right)}^{2}}} \\
& \dfrac{d\left[ {{f}^{-1}}\left( x \right) \right]}{dx}=\dfrac{3}{^{\mathop{\left( 1-x \right)}^{2}}} \\
\end{align}\]
So, \[\dfrac{d\left[ {{f}^{-1}}\left( x \right) \right]}{dx}=\dfrac{3}{^{\mathop{\left( 1-x \right)}^{2}}}\]
So, the correct answer is “Option B”.
Note: To solve such a question you should very well know how to differentiate the basic function. And be patient to apply the quotient rule formula while differentiating, that in the denominator we will have a square of $\text{II}$which is $\text{1-x}$ in our case.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE