Answer
Verified
441.6k+ views
Hint:
We recall that definition of symmetric matrix and the condition for invertible matrices. We take $ M=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right] $ and find the condition for symmetric matrix as $ b=c $ and the condition for invertible is $ ad-bc\ne 0 $ .We check each option and see if we obtain the conditions $ b=c,ad-bc\ne 0 $ to find their truth values.\[\]
Complete step by step answer:
We know that a symmetric matrix is a square matrix whose transpose is the matrix itself. Let us denote the four integral entries of the given matrix $ M $ as $ a,b,c,d $ as
\[M=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\]
We take the transpose of the above matrix and have
\[{{M}^{T}}=\left[ \begin{matrix}
a & c \\
b & d \\
\end{matrix} \right]\]
Since we are give in the question $ M $ is symmetric we have;
\[\begin{align}
& M={{M}^{T}} \\
& \Rightarrow \left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]=\left[ \begin{matrix}
a & c \\
b & d \\
\end{matrix} \right] \\
& \Rightarrow b=c \\
\end{align}\]
So we can write the matrix as
\[M=\left[ \begin{matrix}
a & b \\
b & d \\
\end{matrix} \right]\]
We know that we call matrix invertible when the determinant of the matrix is not zero. So we have;
\[\begin{align}
& \det \left( M \right)\ne 0 \\
& \Rightarrow \det \left( \left| \begin{matrix}
a & b \\
b & d \\
\end{matrix} \right| \right)\ne 0 \\
& \Rightarrow ad-{{b}^{2}}\ne 0 \\
\end{align}\]
Let us check option A. The first column of $ M $ is $ \left[ \begin{matrix}
a \\
c \\
\end{matrix} \right] $ and the transpose of the second row of $ M $ is $ {{\left[ \begin{matrix}
b & d \\
\end{matrix} \right]}^{T}}=\left[ \begin{matrix}
b \\
d \\
\end{matrix} \right] $ . We are given that
\[\begin{align}
& \left[ \begin{matrix}
a \\
b \\
\end{matrix} \right]=\left[ \begin{matrix}
b \\
d \\
\end{matrix} \right] \\
& \Rightarrow a=b=d \\
& \Rightarrow ad-{{b}^{2}}=0 \\
\end{align}\]
So option A is incorrect. Let us check option B. The second row of $ M $ is $ \left[ \begin{matrix}
b & d \\
\end{matrix} \right] $ and the transpose of the first column of $ M $ is $ {{\left[ \begin{matrix}
a \\
b \\
\end{matrix} \right]}^{T}}=\left[ \begin{matrix}
a & b \\
\end{matrix} \right] $ . We are given
\[\begin{align}
& \left[ \begin{matrix}
b & d \\
\end{matrix} \right]=\left[ \begin{matrix}
a & b \\
\end{matrix} \right] \\
& \Rightarrow b=a,d=b \\
& \Rightarrow a=b=d \\
& \Rightarrow ad-{{b}^{2}}=0 \\
\end{align}\]
So option B is incorrect. Let us check option C. Since $ M $ is diagonal matrix with non-zero entries in the main diagonal we have $ b=c=0 $ . So we have
\[\det \left( M \right)=ad-{{b}^{2}}=ad-0=ad\ne 0\left( \because a,d\in Z \right)\]
So option C is correct. Let us check option D. The product of entries in the main diagonal of $ M $ is $ a\times d=ad $ . We are given $ ad $ is not perfect square and hence $ ad\ne {{b}^{2}} $ for any integer $ b $ . So we have
\[\det \left( M \right)=ad-{{b}^{2}}\ne 0\]
So option D is correct. The correct options are C and D. \[\]
Note:
We note that we only have equality between matrices $ A=B $ when they have the same order and corresponding elements in the positions are equal which means $ {{a}_{ij}}={{b}_{ij}} $ . We use invertible matrices to solve a system of equations. We find the transpose by writing rows of an original matrix as columns or writing columns of the original matrix as rows. $ A $ is skew-symmetric matrix if $ A=-{{A}^{T}} $ .
We recall that definition of symmetric matrix and the condition for invertible matrices. We take $ M=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right] $ and find the condition for symmetric matrix as $ b=c $ and the condition for invertible is $ ad-bc\ne 0 $ .We check each option and see if we obtain the conditions $ b=c,ad-bc\ne 0 $ to find their truth values.\[\]
Complete step by step answer:
We know that a symmetric matrix is a square matrix whose transpose is the matrix itself. Let us denote the four integral entries of the given matrix $ M $ as $ a,b,c,d $ as
\[M=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\]
We take the transpose of the above matrix and have
\[{{M}^{T}}=\left[ \begin{matrix}
a & c \\
b & d \\
\end{matrix} \right]\]
Since we are give in the question $ M $ is symmetric we have;
\[\begin{align}
& M={{M}^{T}} \\
& \Rightarrow \left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]=\left[ \begin{matrix}
a & c \\
b & d \\
\end{matrix} \right] \\
& \Rightarrow b=c \\
\end{align}\]
So we can write the matrix as
\[M=\left[ \begin{matrix}
a & b \\
b & d \\
\end{matrix} \right]\]
We know that we call matrix invertible when the determinant of the matrix is not zero. So we have;
\[\begin{align}
& \det \left( M \right)\ne 0 \\
& \Rightarrow \det \left( \left| \begin{matrix}
a & b \\
b & d \\
\end{matrix} \right| \right)\ne 0 \\
& \Rightarrow ad-{{b}^{2}}\ne 0 \\
\end{align}\]
Let us check option A. The first column of $ M $ is $ \left[ \begin{matrix}
a \\
c \\
\end{matrix} \right] $ and the transpose of the second row of $ M $ is $ {{\left[ \begin{matrix}
b & d \\
\end{matrix} \right]}^{T}}=\left[ \begin{matrix}
b \\
d \\
\end{matrix} \right] $ . We are given that
\[\begin{align}
& \left[ \begin{matrix}
a \\
b \\
\end{matrix} \right]=\left[ \begin{matrix}
b \\
d \\
\end{matrix} \right] \\
& \Rightarrow a=b=d \\
& \Rightarrow ad-{{b}^{2}}=0 \\
\end{align}\]
So option A is incorrect. Let us check option B. The second row of $ M $ is $ \left[ \begin{matrix}
b & d \\
\end{matrix} \right] $ and the transpose of the first column of $ M $ is $ {{\left[ \begin{matrix}
a \\
b \\
\end{matrix} \right]}^{T}}=\left[ \begin{matrix}
a & b \\
\end{matrix} \right] $ . We are given
\[\begin{align}
& \left[ \begin{matrix}
b & d \\
\end{matrix} \right]=\left[ \begin{matrix}
a & b \\
\end{matrix} \right] \\
& \Rightarrow b=a,d=b \\
& \Rightarrow a=b=d \\
& \Rightarrow ad-{{b}^{2}}=0 \\
\end{align}\]
So option B is incorrect. Let us check option C. Since $ M $ is diagonal matrix with non-zero entries in the main diagonal we have $ b=c=0 $ . So we have
\[\det \left( M \right)=ad-{{b}^{2}}=ad-0=ad\ne 0\left( \because a,d\in Z \right)\]
So option C is correct. Let us check option D. The product of entries in the main diagonal of $ M $ is $ a\times d=ad $ . We are given $ ad $ is not perfect square and hence $ ad\ne {{b}^{2}} $ for any integer $ b $ . So we have
\[\det \left( M \right)=ad-{{b}^{2}}\ne 0\]
So option D is correct. The correct options are C and D. \[\]
Note:
We note that we only have equality between matrices $ A=B $ when they have the same order and corresponding elements in the positions are equal which means $ {{a}_{ij}}={{b}_{ij}} $ . We use invertible matrices to solve a system of equations. We find the transpose by writing rows of an original matrix as columns or writing columns of the original matrix as rows. $ A $ is skew-symmetric matrix if $ A=-{{A}^{T}} $ .
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE