Let \[n \ge 2\] be an integer
\[A = \left[ {\begin{array}{*{20}{c}}{\cos \left( {\dfrac{{2\pi }}{n}} \right)}&{\sin \left( {\dfrac{{2\pi }}{n}} \right)}&0\\{\sin \left( {\dfrac{{2\pi }}{n}} \right)}&{\cos \left( {\dfrac{{2\pi }}{n}} \right)}&0\\0&0&1\end{array}} \right]\] and \[I\] is the identity matrix of order 3, then following of which is correct
A.\[{A^n} = I\] and \[{A^{n - 1}} \ne I\]
B.\[{A^m} \ne I\] for any positive integer \[m\]
C.\[A\] is not invertible
D.\[{A^n} = 0\] for a positive integer \[m\]
Answer
Verified
448.8k+ views
Hint: Here we will first find the square of the given matrix and then we will find its cube. Then we will see that it is forming a certain pattern. We will follow the same pattern to find the matrix raised to given power. We will simplify the matrix using trigonometric identities and find the correct answer.
Complete step-by-step answer:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}{\cos \left( {\dfrac{{2\pi }}{n}} \right)}&{\sin \left( {\dfrac{{2\pi }}{n}} \right)}&0\\{\sin \left( {\dfrac{{2\pi }}{n}} \right)}&{\cos \left( {\dfrac{{2\pi }}{n}} \right)}&0\\0&0&1\end{array}} \right]\].
Let \[\dfrac{{2\pi }}{n} = x\] and we will substitute this value here.
\[A = \left[ {\begin{array}{*{20}{c}}{\cos x}&{\sin x}&0\\{ - \sin x}&{\cos x}&0\\0&0&1\end{array}} \right]\]
Now, we will find the product of matrices \[A \times A\].
We can write \[A \times A\] as \[{A^2}\].
\[A \times A = {A^2} = \left[ {\begin{array}{*{20}{c}}{\cos x}&{\sin x}&0\\{ - \sin x}&{\cos x}&0\\0&0&1\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}{\cos x}&{\sin x}&0\\{ - \sin x}&{\cos x}&0\\0&0&1\end{array}} \right]\]
Now, we will multiply these matrices using the rule of multiplication of matrices. Therefore, we get
\[ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}{\cos x \times \cos x + \sin x \times \left( { - \sin x} \right)}&{\cos x \times \sin x + \sin x \times \cos x}&0\\{\left( { - \sin x} \right) \times \cos x + \cos x \times \left( { - \sin x} \right)}&{\left( { - \sin x} \right) \times \sin x + \cos x \times \cos x}&0\\0&0&1\end{array}} \right]\]
On further simplifying the terms, we get
\[ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}{{{\cos }^2}x - {{\sin }^2}x}&{2 \cdot \cos x \cdot \sin x}&0\\{ - 2 \cdot \cos x \cdot \sin x}&{{{\cos }^2}x - {{\sin }^2}x}&0\\0&0&1\end{array}} \right]\]
Now using the trigonometric identities \[2\sin x\cos x = \sin 2x\]and \[{\cos ^2}x - {\sin ^2}x = \cos 2x\] in the above matrix, we get.
\[ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}{\cos 2x}&{\sin 2x}&0\\{ - \sin 2x}&{\cos 2x}&0\\0&0&1\end{array}} \right]\]
Similarly, we will find the product of matrices \[{A^2} \times A\] .
We can write \[{A^2} \times A\] as \[{A^3}\].
\[{A^2} \times A = {A^3} = \left[ {\begin{array}{*{20}{c}}{\cos 2x}&{\sin 2x}&0\\{ - \sin 2x}&{\cos 2x}&0\\0&0&1\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}{\cos x}&{\sin x}&0\\{ - \sin x}&{\cos x}&0\\0&0&1\end{array}} \right]\]
Now, we will multiply these matrices using the rule of multiplication of matrices.
\[ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}{\cos 2x \times \cos x + \sin 2x \times \left( { - \sin x} \right)}&{\cos 2x \times \sin x + \sin 2x \times \cos x}&0\\{\left( { - \sin 2x} \right) \times \cos x + \cos 2x \times \left( { - \sin x} \right)}&{\left( { - \sin 2x} \right) \times \sin x + \cos 2x \times \cos x}&0\\0&0&1\end{array}} \right]\]
Now using the trigonometric identities \[\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right)\] and \[\cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right)\] in the above matrix, we get
\[ \Rightarrow {A^3} = \left[ {\begin{array}{*{20}{c}}{\cos 3x}&{\sin 3x}&0\\{ - \sin 3x}&{\cos 3x}&0\\0&0&1\end{array}} \right]\]
We can see that it is following a certain pattern as shown below:
\[{A^n} = \left[ {\begin{array}{*{20}{c}}{\cos nx}&{\sin nx}&0\\{ - \sin nx}&{\cos nx}&0\\0&0&1\end{array}} \right]\]
Now, we will substitute the value \[\dfrac{{2\pi }}{n} = x\] in the above matrix. Therefore, we get
\[ \Rightarrow {A^n} = \left[ {\begin{array}{*{20}{c}}{\cos n \cdot \dfrac{{2\pi }}{n}}&{\sin n \cdot \dfrac{{2\pi }}{n}}&0\\{ - \sin n \cdot \dfrac{{2\pi }}{n}}&{\cos n \cdot \dfrac{{2\pi }}{n}}&0\\0&0&1\end{array}} \right]\]
On further multiplying the terms, we get
\[ \Rightarrow {A^n} = \left[ {\begin{array}{*{20}{c}}{\cos 2\pi }&{\sin 2\pi }&0\\{ - \sin 2\pi }&{\cos 2\pi }&0\\0&0&1\end{array}} \right]\]
Now, substituting \[\sin 2\pi = 0\] and \[\cos 2\pi = 1\] in the above matrix, we get
\[ \Rightarrow {A^n} = \left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]\]
We know that \[I = \left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]\]
Therefore, we have
\[\begin{array}{l} \Rightarrow {A^n} = \left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right] = I\\ \Rightarrow {A^n} = I\end{array}\]
Also, \[{A^{n - 1}} \ne I\]
Hence, the correct option is option A.
Note: To solve this question, we need to know the meaning or definition of the trigonometric identities. Trigonometric identities are defined as the equalities which involve the trigonometric functions. They are always true for every value of the occurring variables for which both sides of the equality are defined. We need to remember that all the trigonometric identities are periodic in nature. They repeat their values after a certain interval. These intervals are a multiple of \[2\pi \].
Complete step-by-step answer:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}{\cos \left( {\dfrac{{2\pi }}{n}} \right)}&{\sin \left( {\dfrac{{2\pi }}{n}} \right)}&0\\{\sin \left( {\dfrac{{2\pi }}{n}} \right)}&{\cos \left( {\dfrac{{2\pi }}{n}} \right)}&0\\0&0&1\end{array}} \right]\].
Let \[\dfrac{{2\pi }}{n} = x\] and we will substitute this value here.
\[A = \left[ {\begin{array}{*{20}{c}}{\cos x}&{\sin x}&0\\{ - \sin x}&{\cos x}&0\\0&0&1\end{array}} \right]\]
Now, we will find the product of matrices \[A \times A\].
We can write \[A \times A\] as \[{A^2}\].
\[A \times A = {A^2} = \left[ {\begin{array}{*{20}{c}}{\cos x}&{\sin x}&0\\{ - \sin x}&{\cos x}&0\\0&0&1\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}{\cos x}&{\sin x}&0\\{ - \sin x}&{\cos x}&0\\0&0&1\end{array}} \right]\]
Now, we will multiply these matrices using the rule of multiplication of matrices. Therefore, we get
\[ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}{\cos x \times \cos x + \sin x \times \left( { - \sin x} \right)}&{\cos x \times \sin x + \sin x \times \cos x}&0\\{\left( { - \sin x} \right) \times \cos x + \cos x \times \left( { - \sin x} \right)}&{\left( { - \sin x} \right) \times \sin x + \cos x \times \cos x}&0\\0&0&1\end{array}} \right]\]
On further simplifying the terms, we get
\[ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}{{{\cos }^2}x - {{\sin }^2}x}&{2 \cdot \cos x \cdot \sin x}&0\\{ - 2 \cdot \cos x \cdot \sin x}&{{{\cos }^2}x - {{\sin }^2}x}&0\\0&0&1\end{array}} \right]\]
Now using the trigonometric identities \[2\sin x\cos x = \sin 2x\]and \[{\cos ^2}x - {\sin ^2}x = \cos 2x\] in the above matrix, we get.
\[ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}{\cos 2x}&{\sin 2x}&0\\{ - \sin 2x}&{\cos 2x}&0\\0&0&1\end{array}} \right]\]
Similarly, we will find the product of matrices \[{A^2} \times A\] .
We can write \[{A^2} \times A\] as \[{A^3}\].
\[{A^2} \times A = {A^3} = \left[ {\begin{array}{*{20}{c}}{\cos 2x}&{\sin 2x}&0\\{ - \sin 2x}&{\cos 2x}&0\\0&0&1\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}{\cos x}&{\sin x}&0\\{ - \sin x}&{\cos x}&0\\0&0&1\end{array}} \right]\]
Now, we will multiply these matrices using the rule of multiplication of matrices.
\[ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}{\cos 2x \times \cos x + \sin 2x \times \left( { - \sin x} \right)}&{\cos 2x \times \sin x + \sin 2x \times \cos x}&0\\{\left( { - \sin 2x} \right) \times \cos x + \cos 2x \times \left( { - \sin x} \right)}&{\left( { - \sin 2x} \right) \times \sin x + \cos 2x \times \cos x}&0\\0&0&1\end{array}} \right]\]
Now using the trigonometric identities \[\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right)\] and \[\cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right)\] in the above matrix, we get
\[ \Rightarrow {A^3} = \left[ {\begin{array}{*{20}{c}}{\cos 3x}&{\sin 3x}&0\\{ - \sin 3x}&{\cos 3x}&0\\0&0&1\end{array}} \right]\]
We can see that it is following a certain pattern as shown below:
\[{A^n} = \left[ {\begin{array}{*{20}{c}}{\cos nx}&{\sin nx}&0\\{ - \sin nx}&{\cos nx}&0\\0&0&1\end{array}} \right]\]
Now, we will substitute the value \[\dfrac{{2\pi }}{n} = x\] in the above matrix. Therefore, we get
\[ \Rightarrow {A^n} = \left[ {\begin{array}{*{20}{c}}{\cos n \cdot \dfrac{{2\pi }}{n}}&{\sin n \cdot \dfrac{{2\pi }}{n}}&0\\{ - \sin n \cdot \dfrac{{2\pi }}{n}}&{\cos n \cdot \dfrac{{2\pi }}{n}}&0\\0&0&1\end{array}} \right]\]
On further multiplying the terms, we get
\[ \Rightarrow {A^n} = \left[ {\begin{array}{*{20}{c}}{\cos 2\pi }&{\sin 2\pi }&0\\{ - \sin 2\pi }&{\cos 2\pi }&0\\0&0&1\end{array}} \right]\]
Now, substituting \[\sin 2\pi = 0\] and \[\cos 2\pi = 1\] in the above matrix, we get
\[ \Rightarrow {A^n} = \left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]\]
We know that \[I = \left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]\]
Therefore, we have
\[\begin{array}{l} \Rightarrow {A^n} = \left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right] = I\\ \Rightarrow {A^n} = I\end{array}\]
Also, \[{A^{n - 1}} \ne I\]
Hence, the correct option is option A.
Note: To solve this question, we need to know the meaning or definition of the trigonometric identities. Trigonometric identities are defined as the equalities which involve the trigonometric functions. They are always true for every value of the occurring variables for which both sides of the equality are defined. We need to remember that all the trigonometric identities are periodic in nature. They repeat their values after a certain interval. These intervals are a multiple of \[2\pi \].
Recently Updated Pages
Difference Between Prokaryotic Cells and Eukaryotic Cells
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
What is spore formation class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
What are the limitations of Rutherfords model of an class 11 chemistry CBSE