
Let \[n \ge 2\] be an integer
\[A = \left[ {\begin{array}{*{20}{c}}{\cos \left( {\dfrac{{2\pi }}{n}} \right)}&{\sin \left( {\dfrac{{2\pi }}{n}} \right)}&0\\{\sin \left( {\dfrac{{2\pi }}{n}} \right)}&{\cos \left( {\dfrac{{2\pi }}{n}} \right)}&0\\0&0&1\end{array}} \right]\] and \[I\] is the identity matrix of order 3, then following of which is correct
A.\[{A^n} = I\] and \[{A^{n - 1}} \ne I\]
B.\[{A^m} \ne I\] for any positive integer \[m\]
C.\[A\] is not invertible
D.\[{A^n} = 0\] for a positive integer \[m\]
Answer
463.8k+ views
Hint: Here we will first find the square of the given matrix and then we will find its cube. Then we will see that it is forming a certain pattern. We will follow the same pattern to find the matrix raised to given power. We will simplify the matrix using trigonometric identities and find the correct answer.
Complete step-by-step answer:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}{\cos \left( {\dfrac{{2\pi }}{n}} \right)}&{\sin \left( {\dfrac{{2\pi }}{n}} \right)}&0\\{\sin \left( {\dfrac{{2\pi }}{n}} \right)}&{\cos \left( {\dfrac{{2\pi }}{n}} \right)}&0\\0&0&1\end{array}} \right]\].
Let \[\dfrac{{2\pi }}{n} = x\] and we will substitute this value here.
\[A = \left[ {\begin{array}{*{20}{c}}{\cos x}&{\sin x}&0\\{ - \sin x}&{\cos x}&0\\0&0&1\end{array}} \right]\]
Now, we will find the product of matrices \[A \times A\].
We can write \[A \times A\] as \[{A^2}\].
\[A \times A = {A^2} = \left[ {\begin{array}{*{20}{c}}{\cos x}&{\sin x}&0\\{ - \sin x}&{\cos x}&0\\0&0&1\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}{\cos x}&{\sin x}&0\\{ - \sin x}&{\cos x}&0\\0&0&1\end{array}} \right]\]
Now, we will multiply these matrices using the rule of multiplication of matrices. Therefore, we get
\[ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}{\cos x \times \cos x + \sin x \times \left( { - \sin x} \right)}&{\cos x \times \sin x + \sin x \times \cos x}&0\\{\left( { - \sin x} \right) \times \cos x + \cos x \times \left( { - \sin x} \right)}&{\left( { - \sin x} \right) \times \sin x + \cos x \times \cos x}&0\\0&0&1\end{array}} \right]\]
On further simplifying the terms, we get
\[ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}{{{\cos }^2}x - {{\sin }^2}x}&{2 \cdot \cos x \cdot \sin x}&0\\{ - 2 \cdot \cos x \cdot \sin x}&{{{\cos }^2}x - {{\sin }^2}x}&0\\0&0&1\end{array}} \right]\]
Now using the trigonometric identities \[2\sin x\cos x = \sin 2x\]and \[{\cos ^2}x - {\sin ^2}x = \cos 2x\] in the above matrix, we get.
\[ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}{\cos 2x}&{\sin 2x}&0\\{ - \sin 2x}&{\cos 2x}&0\\0&0&1\end{array}} \right]\]
Similarly, we will find the product of matrices \[{A^2} \times A\] .
We can write \[{A^2} \times A\] as \[{A^3}\].
\[{A^2} \times A = {A^3} = \left[ {\begin{array}{*{20}{c}}{\cos 2x}&{\sin 2x}&0\\{ - \sin 2x}&{\cos 2x}&0\\0&0&1\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}{\cos x}&{\sin x}&0\\{ - \sin x}&{\cos x}&0\\0&0&1\end{array}} \right]\]
Now, we will multiply these matrices using the rule of multiplication of matrices.
\[ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}{\cos 2x \times \cos x + \sin 2x \times \left( { - \sin x} \right)}&{\cos 2x \times \sin x + \sin 2x \times \cos x}&0\\{\left( { - \sin 2x} \right) \times \cos x + \cos 2x \times \left( { - \sin x} \right)}&{\left( { - \sin 2x} \right) \times \sin x + \cos 2x \times \cos x}&0\\0&0&1\end{array}} \right]\]
Now using the trigonometric identities \[\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right)\] and \[\cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right)\] in the above matrix, we get
\[ \Rightarrow {A^3} = \left[ {\begin{array}{*{20}{c}}{\cos 3x}&{\sin 3x}&0\\{ - \sin 3x}&{\cos 3x}&0\\0&0&1\end{array}} \right]\]
We can see that it is following a certain pattern as shown below:
\[{A^n} = \left[ {\begin{array}{*{20}{c}}{\cos nx}&{\sin nx}&0\\{ - \sin nx}&{\cos nx}&0\\0&0&1\end{array}} \right]\]
Now, we will substitute the value \[\dfrac{{2\pi }}{n} = x\] in the above matrix. Therefore, we get
\[ \Rightarrow {A^n} = \left[ {\begin{array}{*{20}{c}}{\cos n \cdot \dfrac{{2\pi }}{n}}&{\sin n \cdot \dfrac{{2\pi }}{n}}&0\\{ - \sin n \cdot \dfrac{{2\pi }}{n}}&{\cos n \cdot \dfrac{{2\pi }}{n}}&0\\0&0&1\end{array}} \right]\]
On further multiplying the terms, we get
\[ \Rightarrow {A^n} = \left[ {\begin{array}{*{20}{c}}{\cos 2\pi }&{\sin 2\pi }&0\\{ - \sin 2\pi }&{\cos 2\pi }&0\\0&0&1\end{array}} \right]\]
Now, substituting \[\sin 2\pi = 0\] and \[\cos 2\pi = 1\] in the above matrix, we get
\[ \Rightarrow {A^n} = \left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]\]
We know that \[I = \left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]\]
Therefore, we have
\[\begin{array}{l} \Rightarrow {A^n} = \left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right] = I\\ \Rightarrow {A^n} = I\end{array}\]
Also, \[{A^{n - 1}} \ne I\]
Hence, the correct option is option A.
Note: To solve this question, we need to know the meaning or definition of the trigonometric identities. Trigonometric identities are defined as the equalities which involve the trigonometric functions. They are always true for every value of the occurring variables for which both sides of the equality are defined. We need to remember that all the trigonometric identities are periodic in nature. They repeat their values after a certain interval. These intervals are a multiple of \[2\pi \].
Complete step-by-step answer:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}{\cos \left( {\dfrac{{2\pi }}{n}} \right)}&{\sin \left( {\dfrac{{2\pi }}{n}} \right)}&0\\{\sin \left( {\dfrac{{2\pi }}{n}} \right)}&{\cos \left( {\dfrac{{2\pi }}{n}} \right)}&0\\0&0&1\end{array}} \right]\].
Let \[\dfrac{{2\pi }}{n} = x\] and we will substitute this value here.
\[A = \left[ {\begin{array}{*{20}{c}}{\cos x}&{\sin x}&0\\{ - \sin x}&{\cos x}&0\\0&0&1\end{array}} \right]\]
Now, we will find the product of matrices \[A \times A\].
We can write \[A \times A\] as \[{A^2}\].
\[A \times A = {A^2} = \left[ {\begin{array}{*{20}{c}}{\cos x}&{\sin x}&0\\{ - \sin x}&{\cos x}&0\\0&0&1\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}{\cos x}&{\sin x}&0\\{ - \sin x}&{\cos x}&0\\0&0&1\end{array}} \right]\]
Now, we will multiply these matrices using the rule of multiplication of matrices. Therefore, we get
\[ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}{\cos x \times \cos x + \sin x \times \left( { - \sin x} \right)}&{\cos x \times \sin x + \sin x \times \cos x}&0\\{\left( { - \sin x} \right) \times \cos x + \cos x \times \left( { - \sin x} \right)}&{\left( { - \sin x} \right) \times \sin x + \cos x \times \cos x}&0\\0&0&1\end{array}} \right]\]
On further simplifying the terms, we get
\[ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}{{{\cos }^2}x - {{\sin }^2}x}&{2 \cdot \cos x \cdot \sin x}&0\\{ - 2 \cdot \cos x \cdot \sin x}&{{{\cos }^2}x - {{\sin }^2}x}&0\\0&0&1\end{array}} \right]\]
Now using the trigonometric identities \[2\sin x\cos x = \sin 2x\]and \[{\cos ^2}x - {\sin ^2}x = \cos 2x\] in the above matrix, we get.
\[ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}{\cos 2x}&{\sin 2x}&0\\{ - \sin 2x}&{\cos 2x}&0\\0&0&1\end{array}} \right]\]
Similarly, we will find the product of matrices \[{A^2} \times A\] .
We can write \[{A^2} \times A\] as \[{A^3}\].
\[{A^2} \times A = {A^3} = \left[ {\begin{array}{*{20}{c}}{\cos 2x}&{\sin 2x}&0\\{ - \sin 2x}&{\cos 2x}&0\\0&0&1\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}{\cos x}&{\sin x}&0\\{ - \sin x}&{\cos x}&0\\0&0&1\end{array}} \right]\]
Now, we will multiply these matrices using the rule of multiplication of matrices.
\[ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}{\cos 2x \times \cos x + \sin 2x \times \left( { - \sin x} \right)}&{\cos 2x \times \sin x + \sin 2x \times \cos x}&0\\{\left( { - \sin 2x} \right) \times \cos x + \cos 2x \times \left( { - \sin x} \right)}&{\left( { - \sin 2x} \right) \times \sin x + \cos 2x \times \cos x}&0\\0&0&1\end{array}} \right]\]
Now using the trigonometric identities \[\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right)\] and \[\cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right)\] in the above matrix, we get
\[ \Rightarrow {A^3} = \left[ {\begin{array}{*{20}{c}}{\cos 3x}&{\sin 3x}&0\\{ - \sin 3x}&{\cos 3x}&0\\0&0&1\end{array}} \right]\]
We can see that it is following a certain pattern as shown below:
\[{A^n} = \left[ {\begin{array}{*{20}{c}}{\cos nx}&{\sin nx}&0\\{ - \sin nx}&{\cos nx}&0\\0&0&1\end{array}} \right]\]
Now, we will substitute the value \[\dfrac{{2\pi }}{n} = x\] in the above matrix. Therefore, we get
\[ \Rightarrow {A^n} = \left[ {\begin{array}{*{20}{c}}{\cos n \cdot \dfrac{{2\pi }}{n}}&{\sin n \cdot \dfrac{{2\pi }}{n}}&0\\{ - \sin n \cdot \dfrac{{2\pi }}{n}}&{\cos n \cdot \dfrac{{2\pi }}{n}}&0\\0&0&1\end{array}} \right]\]
On further multiplying the terms, we get
\[ \Rightarrow {A^n} = \left[ {\begin{array}{*{20}{c}}{\cos 2\pi }&{\sin 2\pi }&0\\{ - \sin 2\pi }&{\cos 2\pi }&0\\0&0&1\end{array}} \right]\]
Now, substituting \[\sin 2\pi = 0\] and \[\cos 2\pi = 1\] in the above matrix, we get
\[ \Rightarrow {A^n} = \left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]\]
We know that \[I = \left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]\]
Therefore, we have
\[\begin{array}{l} \Rightarrow {A^n} = \left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right] = I\\ \Rightarrow {A^n} = I\end{array}\]
Also, \[{A^{n - 1}} \ne I\]
Hence, the correct option is option A.
Note: To solve this question, we need to know the meaning or definition of the trigonometric identities. Trigonometric identities are defined as the equalities which involve the trigonometric functions. They are always true for every value of the occurring variables for which both sides of the equality are defined. We need to remember that all the trigonometric identities are periodic in nature. They repeat their values after a certain interval. These intervals are a multiple of \[2\pi \].
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Why was the Vernacular Press Act passed by British class 11 social science CBSE

Arrange Water ethanol and phenol in increasing order class 11 chemistry CBSE

Name the nuclear plant located in Uttar Pradesh class 11 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What steps did the French revolutionaries take to create class 11 social science CBSE

How did silk routes link the world Explain with three class 11 social science CBSE
