Answer
Verified
468k+ views
Hint: The point $ P $ is equal to $ \left( {\dfrac{a}{e},Y} \right) $ , since the point $ y $ meets in ellipse so $ y $ is equal to the point $ x\left( {\dfrac{{\dfrac{Y}{a}}}{e}} \right) $ . Then substitute $ y $ in the equation of ellipse to find the tangent at $ A $ . Then we will determine slope in $ PS $ . Product of the lope $ PS $ and $ A $ is equal to $ - 1 $ which will help to determine the value of $ \alpha $ .
Complete step-by-step answer:
The following is the schematic diagram of the ellipse in which $ S $ is the corresponding focus and $ C $ is the centre of the ellipse.
From the above diagram we observe that the point $ A $ is $ \left( {a\cos \theta ,b\sin \theta } \right) $ which is $ \left( {{x_1},{y_1}} \right) $ . The point $ S $ is in the $ S\left( {ae,0} \right) $ and the point $ C $ is $ \left( {0,0} \right) $ .
Equation of ellipse is $ \dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 $ .
Now, let the point $ P $ is in the outer part of ellipse,
$ P\left( {\dfrac{a}{e},Y'} \right) = \left( {\dfrac{a}{e},Y} \right) $
Since we know that the point $ y $ meets at ellipse at $ A $ that is at $ \left( {{x_1},{y_1}} \right) $ we get,
$ y = x\left( {\dfrac{{\dfrac{Y}{a}}}{e}} \right) $
Now, we know that the equation of ellipse is,
$ \dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 $
Since $ y $ lies in the ellipse so the equation changes to,
$ \begin{array}{c}
\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\\
\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{\dfrac{{{x^2}{Y^2}}}{{{a^2}{e^2}}}}}{{{b^2}}} = 1
\end{array} $
On further solving the above expression, we get the value as,
$ \dfrac{{{x^2}}}{{{a^2}}} + {x^2}{Y^2}\dfrac{{\left( {{a^2} - {b^2}} \right)}}{{{b^2}}} = 1 $
Since, the eccentricity $ e $ is equal to $ \sqrt {{a^2} - {b^2}} $ . So, let us substitute the value we obtain,
$ \begin{array}{l}
\dfrac{{{x^2}}}{{{a^2}}} + {x^2}{Y^2}\dfrac{{{e^2}}}{{1 - {e^2}}} = 1\\
{x^2}\left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right) = 1\\
\end{array} $
The take term $ \left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right) $ to the right side and then take the square root both sides then we get,
$ \begin{array}{l}
{x^2} = \dfrac{1}{{\left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right)}}\\
x = \dfrac{1}{{\sqrt {\left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right)} }}
\end{array} $
This implies that $ x = \dfrac{1}{{\sqrt {\left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right)} }} $ .
Now, we have to find the slope of the tangent at the point $ A $ is equal to $ - \dfrac{{{b^2}}}{{{a^2}}}\dfrac{{{x_1}}}{{{y_1}}} $ .
Since, we know that $ y = x\left( {\dfrac{{\dfrac{Y}{a}}}{e}} \right) $ , let us substitute in the above equation, so we get,
$ \begin{array}{c}
{T_{\rm{A}}} = - \dfrac{{{b^2}}}{{{a^2}}} \times \dfrac{{\dfrac{a}{e}}}{Y}\\
= - \left( {1 - {e^2}} \right) \times \dfrac{a}{{eY}}
\end{array} $
Also, slope of $ PS $ is equal to,
$ \dfrac{Y}{{\dfrac{{a{e^2}}}{{1 - {e^2}}}}} = \dfrac{{Ye}}{{a\left( {1 - {e^2}} \right)}} $
Now, we will calculate the product of slope of $ PS $ and $ {T_A} $ which is given as,
$ \begin{array}{l}
= \left[ { - \left( {1 - {e^2}} \right) \times \dfrac{a}{{eY}}} \right] \times \left[ {\dfrac{{Ye}}{{a\left( {1 - {e^2}} \right)}}} \right]\\
= - 1
\end{array} $
Then, we can say that $ \alpha = \dfrac{\pi }{2} $ because PS is perpendicular to the tangent.
Hence, the correct option is $ \dfrac{\pi }{2} $ .
So, the correct answer is “Option b”.
Note: Do not forget to take the $ y $ at the $ x\left( {\dfrac{{\dfrac{Y}{a}}}{e}} \right) $ and this can. also be done by different methods. Also, take $ A $ as $ \left( {a\cos \theta ,b\sin \theta } \right) $ and equation of $ AC $ is $ y = \dfrac{b}{a}x\tan \theta $ where, $ \tan \theta $ is the slope.
Complete step-by-step answer:
The following is the schematic diagram of the ellipse in which $ S $ is the corresponding focus and $ C $ is the centre of the ellipse.
From the above diagram we observe that the point $ A $ is $ \left( {a\cos \theta ,b\sin \theta } \right) $ which is $ \left( {{x_1},{y_1}} \right) $ . The point $ S $ is in the $ S\left( {ae,0} \right) $ and the point $ C $ is $ \left( {0,0} \right) $ .
Equation of ellipse is $ \dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 $ .
Now, let the point $ P $ is in the outer part of ellipse,
$ P\left( {\dfrac{a}{e},Y'} \right) = \left( {\dfrac{a}{e},Y} \right) $
Since we know that the point $ y $ meets at ellipse at $ A $ that is at $ \left( {{x_1},{y_1}} \right) $ we get,
$ y = x\left( {\dfrac{{\dfrac{Y}{a}}}{e}} \right) $
Now, we know that the equation of ellipse is,
$ \dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 $
Since $ y $ lies in the ellipse so the equation changes to,
$ \begin{array}{c}
\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\\
\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{\dfrac{{{x^2}{Y^2}}}{{{a^2}{e^2}}}}}{{{b^2}}} = 1
\end{array} $
On further solving the above expression, we get the value as,
$ \dfrac{{{x^2}}}{{{a^2}}} + {x^2}{Y^2}\dfrac{{\left( {{a^2} - {b^2}} \right)}}{{{b^2}}} = 1 $
Since, the eccentricity $ e $ is equal to $ \sqrt {{a^2} - {b^2}} $ . So, let us substitute the value we obtain,
$ \begin{array}{l}
\dfrac{{{x^2}}}{{{a^2}}} + {x^2}{Y^2}\dfrac{{{e^2}}}{{1 - {e^2}}} = 1\\
{x^2}\left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right) = 1\\
\end{array} $
The take term $ \left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right) $ to the right side and then take the square root both sides then we get,
$ \begin{array}{l}
{x^2} = \dfrac{1}{{\left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right)}}\\
x = \dfrac{1}{{\sqrt {\left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right)} }}
\end{array} $
This implies that $ x = \dfrac{1}{{\sqrt {\left( {\dfrac{1}{{{a^2}}} + \dfrac{{{Y^2}{e^2}}}{{1 - {e^2}}}} \right)} }} $ .
Now, we have to find the slope of the tangent at the point $ A $ is equal to $ - \dfrac{{{b^2}}}{{{a^2}}}\dfrac{{{x_1}}}{{{y_1}}} $ .
Since, we know that $ y = x\left( {\dfrac{{\dfrac{Y}{a}}}{e}} \right) $ , let us substitute in the above equation, so we get,
$ \begin{array}{c}
{T_{\rm{A}}} = - \dfrac{{{b^2}}}{{{a^2}}} \times \dfrac{{\dfrac{a}{e}}}{Y}\\
= - \left( {1 - {e^2}} \right) \times \dfrac{a}{{eY}}
\end{array} $
Also, slope of $ PS $ is equal to,
$ \dfrac{Y}{{\dfrac{{a{e^2}}}{{1 - {e^2}}}}} = \dfrac{{Ye}}{{a\left( {1 - {e^2}} \right)}} $
Now, we will calculate the product of slope of $ PS $ and $ {T_A} $ which is given as,
$ \begin{array}{l}
= \left[ { - \left( {1 - {e^2}} \right) \times \dfrac{a}{{eY}}} \right] \times \left[ {\dfrac{{Ye}}{{a\left( {1 - {e^2}} \right)}}} \right]\\
= - 1
\end{array} $
Then, we can say that $ \alpha = \dfrac{\pi }{2} $ because PS is perpendicular to the tangent.
Hence, the correct option is $ \dfrac{\pi }{2} $ .
So, the correct answer is “Option b”.
Note: Do not forget to take the $ y $ at the $ x\left( {\dfrac{{\dfrac{Y}{a}}}{e}} \right) $ and this can. also be done by different methods. Also, take $ A $ as $ \left( {a\cos \theta ,b\sin \theta } \right) $ and equation of $ AC $ is $ y = \dfrac{b}{a}x\tan \theta $ where, $ \tan \theta $ is the slope.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Explain the Basics of Computer and Number System?
Class 11 Question and Answer - Your Ultimate Solutions Guide
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE
10 examples of friction in our daily life
Can anyone list 10 advantages and disadvantages of friction