Answer
Verified
470.1k+ views
Hint:By observing the equation we can see that the intermediate form ${1^\infty }$. So we solve it according to this
$\mathop {\lim }\limits_{x \to 0} {(f(x))^{g(x)}}$where for $x \to 0\,f(x) \to 1$and for \[x \to 0\,\,\,g(x) \to \infty \]. Then
\[\mathop {\lim }\limits_{x \to 0} {(f(x))^{g(x)}} = {e^{\mathop {\lim }\limits_{x \to 0 + } \dfrac{{(f(x) - 1)}}{{g(x)}}}}\]
Complete step-by-step answer:
Given $p = \mathop {\lim }\limits_{x \to 0 + } {(1 + {\tan ^2}\sqrt x )^{\dfrac{1}{{2x}}}}$ $ \to (1)$
We can see that for $x \to {0^ + },1 + {\tan ^2}\sqrt x \to 1$and for $x \to {0^ + },\dfrac{1}{{2x}} \to \infty $
So for $x \to {0^ + },{(1 + {\tan ^2}\sqrt x )^{\dfrac{1}{{2x}}}} \to {1^\infty }$
So it is an intermediate form ${1^\infty }$.
And we know for ${1^\infty }$intermediate form $\mathop {\lim }\limits_{x \to 0} {(f(x))^{g(x)}}$where for $x \to 0\,f(x) \to 1$and for \[x \to 0\,\,\,g(x) \to \infty \].
\[\mathop {\lim }\limits_{x \to 0} {(f(x))^{g(x)}} = {e^{\mathop {\lim }\limits_{x \to 0 + } \dfrac{{(f(x) - 1)}}{{g(x)}}}}\] $ \to (2)$
Now using (2) in (1) we get,
\[
p = \mathop {\lim }\limits_{x \to 0 + } {(1 + {\tan ^2}\sqrt x )^{\dfrac{1}{{2x}}}} = {e^{\mathop {\lim }\limits_{x \to 0} \dfrac{1}{{2x}}(1 + {{\tan }^2}\sqrt x - 1)}} \\
p = {e^{\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\tan }^2}\sqrt x }}{{2x}}}} \\
p = {e^{\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\tan }^2}\sqrt x }}{{2{{\sqrt x }^2}}}}} \\
p = {e^{\mathop {\lim }\limits_{x \to 0} {{\left( {\dfrac{{\tan \sqrt x }}{{\sqrt x }}} \right)}^2} \times \dfrac{1}{2}}} \\
\]
Now using \[\mathop {\lim }\limits_{x \to 0 + } {\left( {\dfrac{{\tan \sqrt x }}{{\sqrt x }}} \right)^2} = 1\]. We get,
$
p = {e^{\dfrac{1}{2}(1)}} \\
p = {e^{\dfrac{1}{2}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to (3) \\
$
Now we need to find the value of $\log p$, according to the question.
So taking log on both sides in (3), we get
$\log p = \log {e^{\dfrac{1}{2}}}$
Now using $\log {e^b} = b\log e = b(1) = b$
$\log p = \dfrac{1}{2}\log e = \dfrac{1}{2}$
So $\log p = \dfrac{1}{2}$
So, the correct answer is “Option C”.
Note:Using $\tan x = x + \dfrac{{{x^3}}}{3} + \dfrac{{2{x^5}}}{{15}} + .............$.
We can see that
\[
\mathop {\lim }\limits_{x \to 0 + } {\left( {\dfrac{{\tan \sqrt x }}{{\sqrt x }}} \right)^2} = \mathop {\lim }\limits_{x \to 0 + } \left( {\dfrac{{\sqrt x + \dfrac{{{{\sqrt x }^3}}}{3} + \dfrac{{2{{\sqrt x }^5}}}{{15}} + ...........}}{{\sqrt x }}} \right) \\
= \mathop {\lim }\limits_{x \to 0 + } \left( {1 + \dfrac{{{{\sqrt x }^2}}}{3} + \dfrac{{2{{\sqrt x }^4}}}{{15}} + ..........} \right) \\
= 1 \\
\]
This point is important to solve this question. And we take $\log $ with base $e$ and then ${\log _e}e = 1$. And will not take $\log $ with base $10$.
$\mathop {\lim }\limits_{x \to 0} {(f(x))^{g(x)}}$where for $x \to 0\,f(x) \to 1$and for \[x \to 0\,\,\,g(x) \to \infty \]. Then
\[\mathop {\lim }\limits_{x \to 0} {(f(x))^{g(x)}} = {e^{\mathop {\lim }\limits_{x \to 0 + } \dfrac{{(f(x) - 1)}}{{g(x)}}}}\]
Complete step-by-step answer:
Given $p = \mathop {\lim }\limits_{x \to 0 + } {(1 + {\tan ^2}\sqrt x )^{\dfrac{1}{{2x}}}}$ $ \to (1)$
We can see that for $x \to {0^ + },1 + {\tan ^2}\sqrt x \to 1$and for $x \to {0^ + },\dfrac{1}{{2x}} \to \infty $
So for $x \to {0^ + },{(1 + {\tan ^2}\sqrt x )^{\dfrac{1}{{2x}}}} \to {1^\infty }$
So it is an intermediate form ${1^\infty }$.
And we know for ${1^\infty }$intermediate form $\mathop {\lim }\limits_{x \to 0} {(f(x))^{g(x)}}$where for $x \to 0\,f(x) \to 1$and for \[x \to 0\,\,\,g(x) \to \infty \].
\[\mathop {\lim }\limits_{x \to 0} {(f(x))^{g(x)}} = {e^{\mathop {\lim }\limits_{x \to 0 + } \dfrac{{(f(x) - 1)}}{{g(x)}}}}\] $ \to (2)$
Now using (2) in (1) we get,
\[
p = \mathop {\lim }\limits_{x \to 0 + } {(1 + {\tan ^2}\sqrt x )^{\dfrac{1}{{2x}}}} = {e^{\mathop {\lim }\limits_{x \to 0} \dfrac{1}{{2x}}(1 + {{\tan }^2}\sqrt x - 1)}} \\
p = {e^{\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\tan }^2}\sqrt x }}{{2x}}}} \\
p = {e^{\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\tan }^2}\sqrt x }}{{2{{\sqrt x }^2}}}}} \\
p = {e^{\mathop {\lim }\limits_{x \to 0} {{\left( {\dfrac{{\tan \sqrt x }}{{\sqrt x }}} \right)}^2} \times \dfrac{1}{2}}} \\
\]
Now using \[\mathop {\lim }\limits_{x \to 0 + } {\left( {\dfrac{{\tan \sqrt x }}{{\sqrt x }}} \right)^2} = 1\]. We get,
$
p = {e^{\dfrac{1}{2}(1)}} \\
p = {e^{\dfrac{1}{2}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to (3) \\
$
Now we need to find the value of $\log p$, according to the question.
So taking log on both sides in (3), we get
$\log p = \log {e^{\dfrac{1}{2}}}$
Now using $\log {e^b} = b\log e = b(1) = b$
$\log p = \dfrac{1}{2}\log e = \dfrac{1}{2}$
So $\log p = \dfrac{1}{2}$
So, the correct answer is “Option C”.
Note:Using $\tan x = x + \dfrac{{{x^3}}}{3} + \dfrac{{2{x^5}}}{{15}} + .............$.
We can see that
\[
\mathop {\lim }\limits_{x \to 0 + } {\left( {\dfrac{{\tan \sqrt x }}{{\sqrt x }}} \right)^2} = \mathop {\lim }\limits_{x \to 0 + } \left( {\dfrac{{\sqrt x + \dfrac{{{{\sqrt x }^3}}}{3} + \dfrac{{2{{\sqrt x }^5}}}{{15}} + ...........}}{{\sqrt x }}} \right) \\
= \mathop {\lim }\limits_{x \to 0 + } \left( {1 + \dfrac{{{{\sqrt x }^2}}}{3} + \dfrac{{2{{\sqrt x }^4}}}{{15}} + ..........} \right) \\
= 1 \\
\]
This point is important to solve this question. And we take $\log $ with base $e$ and then ${\log _e}e = 1$. And will not take $\log $ with base $10$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE