Answer
Verified
460.8k+ views
Hint: First we have to draw the figure and understand the area $S$. Then the first two options can be checked simply using the values of $x,y$. Using B, C can be checked. Certain rearrangements are needed to check D. The concept used here is that the area under a curve is equal to the integral value. For applying this we have to find the limits as well.
Formula used:
Area enclosed by a curve $y = f(x)$ within the limits $x = a$ to $x = b$ is simply the integral of the curve with same limits.
$ \Rightarrow S = \int\limits_a^b {f(x)dx} $
Complete step by step answer:
Given that $S$ is the area enclosed by $y = {e^{ - {x^2}}},y = 0,x = 0,x = 1.$
$y = 0,x = 0$ represent the $x,y$ axis respectively.
Let the curve drawn represent $y = {e^{ - {x^2}}}$.
In the figure, the shaded portion represents the area $S$.
When $x = 1 \Rightarrow y = {e^{ - {x^2}}} = {e^{ - 1}} = \dfrac{1}{e}$.
Since $S$ contains a rectangle OSDC with vertices $(0,0),(1,0),(1,\dfrac{1}{e}),(0,\dfrac{1}{e})$, where S(1,0).
The area of that rectangle will be $A = length \times breadth $
$\Rightarrow A= 1 \times \dfrac{1}{e} = \dfrac{1}{e}$.
Therefore clearly $S \geqslant \dfrac{1}{e}$.
This implies option A is right.
Also, since $S$ is the area enclosed by the curve $y = {e^{ - {x^2}}},x = 0,y = 0,x = 1$
We can consider $S = \int\limits_0^1 {{e^{ - {x^2}}}} dx$.
$\Rightarrow x \in [0,1] \Rightarrow {x^2} \leqslant x$
Multiplying both sides by $ - 1$ and taking exponents we have,
$\Rightarrow - {x^2} \geqslant - x \Rightarrow {e^{ - {x^2}}} \geqslant {e^{ - x}}$
Therefore, $S = \int\limits_0^1 {{e^{ - {x^2}}}} dx \geqslant \int\limits_0^1 {{e^{ - x}}} dx$
Integrating we get, $S \geqslant [ - {e^{ - x}}]_0^1 = {e^0} - {e^{ - 1}} = 1 - \dfrac{1}{e}$
$ \Rightarrow S \geqslant 1 - \dfrac{1}{e}$
Therefore option B is also right.
To show that option C is incorrect,
$\Rightarrow e > \sqrt e \Rightarrow \dfrac{1}{e} < \dfrac{1}{{\sqrt e }}$
$ \Rightarrow - \dfrac{1}{e} < \dfrac{1}{{\sqrt e }} \Rightarrow 1 - \dfrac{1}{e} < 1 + \dfrac{1}{{\sqrt e }} < \dfrac{1}{4}(1 + \dfrac{1}{{\sqrt e }})$
This implies $1 - \dfrac{1}{e} < \dfrac{1}{4}(1 + \dfrac{1}{{\sqrt e }})$
From B, we have $S \geqslant 1 - \dfrac{1}{e}$
Using these two equations we can say C is incorrect.
Moving on, consider two rectangles in the figure OAPQ and QBRS where $S(1,0)$,
Clearly $S \leqslant $ Area of OAPQ$ + $ Area of QBRS
PQ is drawn parallel to Y axis at the point $x = \dfrac{1}{{\sqrt 2 }}$.
Then $y = {e^{ - {x^2}}} = {e^{ - \dfrac{1}{2}}} = \dfrac{1}{{\sqrt e }}$.
Therefore, B is the point $(\dfrac{1}{{\sqrt 2 }},\dfrac{1}{{\sqrt e }})$.
Area of OAPQ $ = lenth \times breadth = 1 \times \dfrac{1}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }}$
In QBRS, $QB = \dfrac{1}{{\sqrt e }},BR = 1 - \dfrac{1}{{\sqrt 2 }}$
Therefore, Area of QBRS $ = length \times breadth = \dfrac{1}{{\sqrt e }} \times 1 - \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow S \leqslant AreaOAPQ + AreaQBRS = \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt e }}(1 - \dfrac{1}{{\sqrt 2 }})$
So, option D is correct.
Therefore, Option (A), (B) and (D) are correct.
Note:
It is important to identify the graph of the given function and mark the given region. If there is some portion under the X-axis, this area will be negative. So be careful in those cases to split the region if necessary and find the area separately.
Formula used:
Area enclosed by a curve $y = f(x)$ within the limits $x = a$ to $x = b$ is simply the integral of the curve with same limits.
$ \Rightarrow S = \int\limits_a^b {f(x)dx} $
Complete step by step answer:
Given that $S$ is the area enclosed by $y = {e^{ - {x^2}}},y = 0,x = 0,x = 1.$
$y = 0,x = 0$ represent the $x,y$ axis respectively.
Let the curve drawn represent $y = {e^{ - {x^2}}}$.
In the figure, the shaded portion represents the area $S$.
When $x = 1 \Rightarrow y = {e^{ - {x^2}}} = {e^{ - 1}} = \dfrac{1}{e}$.
Since $S$ contains a rectangle OSDC with vertices $(0,0),(1,0),(1,\dfrac{1}{e}),(0,\dfrac{1}{e})$, where S(1,0).
The area of that rectangle will be $A = length \times breadth $
$\Rightarrow A= 1 \times \dfrac{1}{e} = \dfrac{1}{e}$.
Therefore clearly $S \geqslant \dfrac{1}{e}$.
This implies option A is right.
Also, since $S$ is the area enclosed by the curve $y = {e^{ - {x^2}}},x = 0,y = 0,x = 1$
We can consider $S = \int\limits_0^1 {{e^{ - {x^2}}}} dx$.
$\Rightarrow x \in [0,1] \Rightarrow {x^2} \leqslant x$
Multiplying both sides by $ - 1$ and taking exponents we have,
$\Rightarrow - {x^2} \geqslant - x \Rightarrow {e^{ - {x^2}}} \geqslant {e^{ - x}}$
Therefore, $S = \int\limits_0^1 {{e^{ - {x^2}}}} dx \geqslant \int\limits_0^1 {{e^{ - x}}} dx$
Integrating we get, $S \geqslant [ - {e^{ - x}}]_0^1 = {e^0} - {e^{ - 1}} = 1 - \dfrac{1}{e}$
$ \Rightarrow S \geqslant 1 - \dfrac{1}{e}$
Therefore option B is also right.
To show that option C is incorrect,
$\Rightarrow e > \sqrt e \Rightarrow \dfrac{1}{e} < \dfrac{1}{{\sqrt e }}$
$ \Rightarrow - \dfrac{1}{e} < \dfrac{1}{{\sqrt e }} \Rightarrow 1 - \dfrac{1}{e} < 1 + \dfrac{1}{{\sqrt e }} < \dfrac{1}{4}(1 + \dfrac{1}{{\sqrt e }})$
This implies $1 - \dfrac{1}{e} < \dfrac{1}{4}(1 + \dfrac{1}{{\sqrt e }})$
From B, we have $S \geqslant 1 - \dfrac{1}{e}$
Using these two equations we can say C is incorrect.
Moving on, consider two rectangles in the figure OAPQ and QBRS where $S(1,0)$,
Clearly $S \leqslant $ Area of OAPQ$ + $ Area of QBRS
PQ is drawn parallel to Y axis at the point $x = \dfrac{1}{{\sqrt 2 }}$.
Then $y = {e^{ - {x^2}}} = {e^{ - \dfrac{1}{2}}} = \dfrac{1}{{\sqrt e }}$.
Therefore, B is the point $(\dfrac{1}{{\sqrt 2 }},\dfrac{1}{{\sqrt e }})$.
Area of OAPQ $ = lenth \times breadth = 1 \times \dfrac{1}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }}$
In QBRS, $QB = \dfrac{1}{{\sqrt e }},BR = 1 - \dfrac{1}{{\sqrt 2 }}$
Therefore, Area of QBRS $ = length \times breadth = \dfrac{1}{{\sqrt e }} \times 1 - \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow S \leqslant AreaOAPQ + AreaQBRS = \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt e }}(1 - \dfrac{1}{{\sqrt 2 }})$
So, option D is correct.
Therefore, Option (A), (B) and (D) are correct.
Note:
It is important to identify the graph of the given function and mark the given region. If there is some portion under the X-axis, this area will be negative. So be careful in those cases to split the region if necessary and find the area separately.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE