
Let \[S = \{ \left( {\lambda ,\mu } \right) \in R \times R:f\left( t \right) = \left( {\left| \lambda \right|{e^{\left| t \right|}} - \mu } \right) \cdot \sin \left( {2\left| t \right|} \right),t \in R,\] is a differentiable function $\} $
Then $S$ is a subset of ?
A. $R \times [0,\infty )$
B. \[( - \infty ,0) \times R\]
C. $[0,\infty ) \times R$
D. $R \times ( - \infty ,0)$
Answer
543.3k+ views
Hint: In the above question, we have given a function $f\left( t \right) = \left( {\left| \lambda \right|{e^{\left| t \right|}} - \mu } \right) \cdot \sin \left( {2\left| t \right|} \right)$. Now, we will see the value of function at $t > 0$ and $t < 0$. Now, we have given that this function is differentiable, so, we will differentiate the function and we will see the value of the function at $t > 0$ and $t < 0$. Now, we will see that at $t = 0$, the Right hand derivative is equal to the left hand derivative. Now, we will take the value of the differentiated function at $t = 0$. Then on simplifying, we will get the range of $\left| \lambda \right|,\mu $ and then checking the options will provide us the correct answer.
Complete step-by-step answer:
In the above question, we have given an equation. That is \[S = \{ \left( {\lambda ,\mu } \right) \in R \times R:f\left( t \right) = \left( {\left| \lambda \right|{e^{\left| t \right|}} - \mu } \right) \cdot \sin \left( {2\left| t \right|} \right),t \in R,\]
Now, we have also given that \[f\left( t \right) = \left( {\left| \lambda \right|{e^{\left| t \right|}} - \mu } \right) \cdot \sin \left( {2\left| t \right|} \right)\] is differentiable.
Now, we can say that
\[f\left( t \right) = \left( {\left| \lambda \right|{e^{\left| t \right|}} - \mu } \right) \cdot \sin \left( {e\left| t \right|} \right)\] at $t > 0$
\[f\left( t \right) = \left( {\left| \lambda \right|{e^{\left| { - t} \right|}} - \mu } \right) \cdot \left( { - \sin \left( {2\left| t \right|} \right)} \right)\] at $t < 0$
Now, differentiating the function as it is given that the function is differentiable.
\[f'\left( t \right) = \left( {\left( {\left| \lambda \right|{e^{\left| t \right|}}} \right)\sin 2t + \left( {\left| \lambda \right|{e^{\left| t \right|}} - \mu } \right)\left( {2\cos et} \right)} \right)\] at $t > 0$
\[f'\left( t \right) = \left( {\left( {\left| \lambda \right|{e^{ - t}}} \right)\sin 2t + \left( {\left| \lambda \right|{e^{ - t}} - \mu } \right)\left( { - \cos 2t} \right)} \right)\] at $t < 0$
Now, we now that $f\left( t \right)$ is differentiable,
Therefore, Left Hand Derivative is equal to Right Hand Derivative.
\[
\Rightarrow \left( {\left( {\left| \lambda \right|} \right)\sin 2\left( 0 \right) + \left( {\left| \lambda \right|{e^0} - \mu } \right)\left( {2\cos \infty } \right)} \right) = \left( {\left( {\left| \lambda \right|{e^{ - 0}}} \right)\sin \infty + \left( {\left| \lambda \right|{e^{ - 0}} - \mu } \right)\left( { - \cos 0} \right)} \right) \\
\Rightarrow 0 + \left( {\left| \lambda \right| - \mu } \right)2 = 0 - 2\left( {\left| \lambda \right|e - \mu } \right) \\
\Rightarrow 4\left( {\left| \lambda \right| - \mu } \right) = 0 \\
\Rightarrow \left| \lambda \right| = \mu \\
\]
Now, we know that,
$S = \left( {\lambda ,\mu } \right) = \left\{ {\lambda \in R,\mu \in \left( {0,\infty } \right)} \right\}$
Now, $0 \leqslant \lambda < \infty $ and $0 < \mu < \infty $
Now, by checking the options, we will get a correct option,
So, we get that Set $S$ is subset of $R \times [0,\infty )$
Hence, the correct option for this question is A.
Note:
We can solve the above question with another approach. As we know that $\sin \left( {2\left| t \right|} \right)$ is not differentiable at $\infty $ points. But in the problem the given function is differentiable. So, to have this function is differentiable, we need to make $\left( {\left| \lambda \right|{e^{\left| t \right|}} - \mu } \right)$ equal to zero. Now, putting this equal to zero, will provide us the range of the ${e^{\left| t \right|}}$. Hence, we will get a correct option for our answer.
Complete step-by-step answer:
In the above question, we have given an equation. That is \[S = \{ \left( {\lambda ,\mu } \right) \in R \times R:f\left( t \right) = \left( {\left| \lambda \right|{e^{\left| t \right|}} - \mu } \right) \cdot \sin \left( {2\left| t \right|} \right),t \in R,\]
Now, we have also given that \[f\left( t \right) = \left( {\left| \lambda \right|{e^{\left| t \right|}} - \mu } \right) \cdot \sin \left( {2\left| t \right|} \right)\] is differentiable.
Now, we can say that
\[f\left( t \right) = \left( {\left| \lambda \right|{e^{\left| t \right|}} - \mu } \right) \cdot \sin \left( {e\left| t \right|} \right)\] at $t > 0$
\[f\left( t \right) = \left( {\left| \lambda \right|{e^{\left| { - t} \right|}} - \mu } \right) \cdot \left( { - \sin \left( {2\left| t \right|} \right)} \right)\] at $t < 0$
Now, differentiating the function as it is given that the function is differentiable.
\[f'\left( t \right) = \left( {\left( {\left| \lambda \right|{e^{\left| t \right|}}} \right)\sin 2t + \left( {\left| \lambda \right|{e^{\left| t \right|}} - \mu } \right)\left( {2\cos et} \right)} \right)\] at $t > 0$
\[f'\left( t \right) = \left( {\left( {\left| \lambda \right|{e^{ - t}}} \right)\sin 2t + \left( {\left| \lambda \right|{e^{ - t}} - \mu } \right)\left( { - \cos 2t} \right)} \right)\] at $t < 0$
Now, we now that $f\left( t \right)$ is differentiable,
Therefore, Left Hand Derivative is equal to Right Hand Derivative.
\[
\Rightarrow \left( {\left( {\left| \lambda \right|} \right)\sin 2\left( 0 \right) + \left( {\left| \lambda \right|{e^0} - \mu } \right)\left( {2\cos \infty } \right)} \right) = \left( {\left( {\left| \lambda \right|{e^{ - 0}}} \right)\sin \infty + \left( {\left| \lambda \right|{e^{ - 0}} - \mu } \right)\left( { - \cos 0} \right)} \right) \\
\Rightarrow 0 + \left( {\left| \lambda \right| - \mu } \right)2 = 0 - 2\left( {\left| \lambda \right|e - \mu } \right) \\
\Rightarrow 4\left( {\left| \lambda \right| - \mu } \right) = 0 \\
\Rightarrow \left| \lambda \right| = \mu \\
\]
Now, we know that,
$S = \left( {\lambda ,\mu } \right) = \left\{ {\lambda \in R,\mu \in \left( {0,\infty } \right)} \right\}$
Now, $0 \leqslant \lambda < \infty $ and $0 < \mu < \infty $
Now, by checking the options, we will get a correct option,
So, we get that Set $S$ is subset of $R \times [0,\infty )$
Hence, the correct option for this question is A.
Note:
We can solve the above question with another approach. As we know that $\sin \left( {2\left| t \right|} \right)$ is not differentiable at $\infty $ points. But in the problem the given function is differentiable. So, to have this function is differentiable, we need to make $\left( {\left| \lambda \right|{e^{\left| t \right|}} - \mu } \right)$ equal to zero. Now, putting this equal to zero, will provide us the range of the ${e^{\left| t \right|}}$. Hence, we will get a correct option for our answer.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

