Answer
Verified
460.8k+ views
Hint: In this question, we have to evaluate the value of \[t\] when the functional value is equal to zero.
We need to first put \[\left( {t - 5} \right)\] in the given function as we need to find out the value of \[t\] when the functional value is equal to zero, then we equal it to zero. After that, we will solve the quadratic equation to get the values of \[t\].
Formula used:
Here we have used the algebraic formula,
\[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\].
Complete step by step answer:
It is given that, the function \[f(x)\] is defined as \[f\left( x \right) = {x^2} + x - 6\].
We need to find out the values of \[t\] for which \[f\left( {t - 5} \right) = 0\].
Now we will put \[\left( {t - 5} \right)\] in the function \[f\left( x \right) = {x^2} + x - 6\] we get,
\[ \Rightarrow f\left( {t - 5} \right) = {\left( {t - 5} \right)^2} + \left( {t - 5} \right) - 6\]
Using the algebraic formula, \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\], We get,
\[ \Rightarrow {t^2} - 2 \times t \times 5 + 25 + t - 5 - 6\]
We will get by arranging term by term in this quadratic equation,
\[ \Rightarrow {t^2} - 10t + t + 14\]
Subtracting the terms we get,
\[ \Rightarrow {t^2} - 9t + 14\]
Solving the quadratic equation by middle term factor we get,
\[ \Rightarrow {t^2} - 7t - 2t + 14\]
Taking common \[t\] from first two terms and \[ - 2\] last two terms,
\[ \Rightarrow t\left( {t - 7} \right) - 2\left( {t - 7} \right)\]
Factorizing we get,
\[ \Rightarrow \left( {t - 7} \right)\left( {t - 2} \right)\]
Also it is given that, \[f\left( {t - 5} \right) = 0\].
Thus we get, \[\left( {t - 7} \right)\left( {t - 2} \right) = 0\].
Equating two factors equal to zero,
\[ \Rightarrow \left( {t - 7} \right) = 0\] and \[\left( {t - 2} \right) = 0\]
\[ \Rightarrow t = 7\] and \[t = 2\]
For the value of \[t\] is \[2\] and \[7\], \[f\left( {t - 5} \right) = 0\]
$\therefore $ Option (D) is the correct option.
Note:
Like this problem, we have concentrated on the step of factorization. In mathematics there are so many methods to factorize an equation. Here we use the middle term process. So we have to concentrate on splitting the middle term either addition of two numbers or subtraction of two numbers, then make the quadratic equation as the multiplication of two factors. We may make mistakes on that splitting.
The quadratic equation can be solved by the middle-term process. Splitting the middle term either addition of two numbers or subtraction of two numbers, then make the quadratic equation as the multiplication of two factors. By solving the two factors we will get the solution.
We need to first put \[\left( {t - 5} \right)\] in the given function as we need to find out the value of \[t\] when the functional value is equal to zero, then we equal it to zero. After that, we will solve the quadratic equation to get the values of \[t\].
Formula used:
Here we have used the algebraic formula,
\[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\].
Complete step by step answer:
It is given that, the function \[f(x)\] is defined as \[f\left( x \right) = {x^2} + x - 6\].
We need to find out the values of \[t\] for which \[f\left( {t - 5} \right) = 0\].
Now we will put \[\left( {t - 5} \right)\] in the function \[f\left( x \right) = {x^2} + x - 6\] we get,
\[ \Rightarrow f\left( {t - 5} \right) = {\left( {t - 5} \right)^2} + \left( {t - 5} \right) - 6\]
Using the algebraic formula, \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\], We get,
\[ \Rightarrow {t^2} - 2 \times t \times 5 + 25 + t - 5 - 6\]
We will get by arranging term by term in this quadratic equation,
\[ \Rightarrow {t^2} - 10t + t + 14\]
Subtracting the terms we get,
\[ \Rightarrow {t^2} - 9t + 14\]
Solving the quadratic equation by middle term factor we get,
\[ \Rightarrow {t^2} - 7t - 2t + 14\]
Taking common \[t\] from first two terms and \[ - 2\] last two terms,
\[ \Rightarrow t\left( {t - 7} \right) - 2\left( {t - 7} \right)\]
Factorizing we get,
\[ \Rightarrow \left( {t - 7} \right)\left( {t - 2} \right)\]
Also it is given that, \[f\left( {t - 5} \right) = 0\].
Thus we get, \[\left( {t - 7} \right)\left( {t - 2} \right) = 0\].
Equating two factors equal to zero,
\[ \Rightarrow \left( {t - 7} \right) = 0\] and \[\left( {t - 2} \right) = 0\]
\[ \Rightarrow t = 7\] and \[t = 2\]
For the value of \[t\] is \[2\] and \[7\], \[f\left( {t - 5} \right) = 0\]
$\therefore $ Option (D) is the correct option.
Note:
Like this problem, we have concentrated on the step of factorization. In mathematics there are so many methods to factorize an equation. Here we use the middle term process. So we have to concentrate on splitting the middle term either addition of two numbers or subtraction of two numbers, then make the quadratic equation as the multiplication of two factors. We may make mistakes on that splitting.
The quadratic equation can be solved by the middle-term process. Splitting the middle term either addition of two numbers or subtraction of two numbers, then make the quadratic equation as the multiplication of two factors. By solving the two factors we will get the solution.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE