Answer
Verified
498.3k+ views
Hint: Use the fact that if m be the number of elements in a set X and n be the number of elements in a set
Y, and if $n\ge m$, then the number of one-one functions from X to Y is given by the formula
$\dfrac{n!}{\left( n-m \right)!}$. Further use the fact that the total number of onto functions from a set X with m elements and another set Y with n elements, such that $m\ge n$ is given by the sum $\sum\limits_{k=0}^{n}{-{{1}^{k}}}\left( \begin{matrix} n \\ k \\
\end{matrix} \right){{\left( n-k \right)}^{m}}$. . These values of $\alpha $ and $\beta $ can then be used to calculate the required value of $\dfrac{1}{51}\left( \alpha -\beta \right)$.
Complete step by step solution:
For mapping functions from set X having 5 elements to set Y having 7 elements, these functions can be
either one-one or many-one. The total number of one-one functions can be calculated using the formula
$\dfrac{n!}{\left( n-m \right)!}$, where n is the number of elements in Y and m is the number of elements
in X.
Thus, for the given question, $m=5$ and $n=7$. Using these values in the formula, we get
$\begin{align}
& \alpha =\dfrac{7!}{\left( 7-5 \right)!} \\
& \Rightarrow \alpha =\dfrac{7!}{2!} \\
& \Rightarrow \alpha =7\times 6\times 5\times 4\times 3 \\
& \Rightarrow \alpha =2520 \\
\end{align}$
Thus, the required value of $\alpha $ is 2520.
For the calculation of $\beta $, consider the mapping of functions from Y to X. The total number of onto
functions from a set Y having m elements to another set X having n elements, where $m\ge n$ is given by
the formula $\sum\limits_{k=0}^{n}{-{{1}^{k}}}\left( \begin{matrix}
n \\
k \\
\end{matrix} \right){{\left( n-k \right)}^{m}}$.
Thus, we calculate this sum with \[m=7\] and \[n=5\] as
$\begin{align}
& \beta =\sum\limits_{k=0}^{5}{{{\left( -1 \right)}^{k}}}\left( \begin{matrix}
5 \\
k \\
\end{matrix} \right){{\left( 5-k \right)}^{7}} \\
& \Rightarrow \beta ={{\left( -1 \right)}^{0}}\left( \begin{matrix}
5 \\
0 \\
\end{matrix} \right){{\left( 5-0 \right)}^{7}}+{{\left( -1 \right)}^{1}}\left( \begin{matrix}
5 \\
1 \\
\end{matrix} \right){{\left( 5-1 \right)}^{7}}+{{\left( -1 \right)}^{2}}\left( \begin{matrix}
5 \\
2 \\
\end{matrix} \right){{\left( 5-2 \right)}^{7}}+{{\left( -1 \right)}^{3}}\left( \begin{matrix}
5 \\
3 \\
\end{matrix} \right){{\left( 5-3 \right)}^{7}} \\
& \ \ \ \ \ \ \ \ \ \ +{{\left( -1 \right)}^{4}}\left( \begin{matrix}
5 \\
4 \\
\end{matrix} \right){{\left( 5-4 \right)}^{7}}+{{\left( -1 \right)}^{5}}\left( \begin{matrix}
5 \\
5 \\
\end{matrix} \right){{\left( 5-5 \right)}^{7}} \\
& \Rightarrow \beta =1\times {{5}^{7}}-5\times {{4}^{7}}+10\times {{3}^{7}}-10\times
{{2}^{7}}+5\times {{1}^{7}} \\
& \Rightarrow \beta =5\left( {{5}^{6}}-{{4}^{7}} \right)+10\left( 2187-128 \right)+5 \\
& \Rightarrow \beta =5\left( 15625-16384 \right)+10\times 2059+5 \\
& \Rightarrow \beta =5\times \left( -759 \right)+20590+5 \\
& \Rightarrow \beta =20595-3795 \\
& \Rightarrow \beta =16800 \\
\end{align}$
Thus, the value of $\beta $ comes out to be 16800. This gives the value of $\dfrac{1}{51}\left( \beta -
\alpha \right)$ as
$\begin{align}
& \dfrac{1}{51}\left( \beta -\alpha \right)=\dfrac{1}{51}\left( 16800-2520 \right) \\
& \Rightarrow \dfrac{1}{51}\left( \beta -\alpha \right)=\dfrac{1}{51}\left( 14280 \right) \\
& \Rightarrow \dfrac{1}{51}\left( \beta -\alpha \right)=280 \\
\end{align}$
Thus the required value of $\dfrac{1}{51}\left( \beta -\alpha \right)$ is 280.
Note: The conditions for the calculation of one-one function and the calculation of the number of onto
functions are very important and to be kept in mind. These conditions, $n\ge m$ for one-one functions
and $m\ge n$ for onto functions is not only preliminary to the application of formulae but also necessary
for the existence of one-one and onto functions. If these conditions are violated, the number of one-one
functions and onto functions will both become 0 in their respective cases.
Y, and if $n\ge m$, then the number of one-one functions from X to Y is given by the formula
$\dfrac{n!}{\left( n-m \right)!}$. Further use the fact that the total number of onto functions from a set X with m elements and another set Y with n elements, such that $m\ge n$ is given by the sum $\sum\limits_{k=0}^{n}{-{{1}^{k}}}\left( \begin{matrix} n \\ k \\
\end{matrix} \right){{\left( n-k \right)}^{m}}$. . These values of $\alpha $ and $\beta $ can then be used to calculate the required value of $\dfrac{1}{51}\left( \alpha -\beta \right)$.
Complete step by step solution:
For mapping functions from set X having 5 elements to set Y having 7 elements, these functions can be
either one-one or many-one. The total number of one-one functions can be calculated using the formula
$\dfrac{n!}{\left( n-m \right)!}$, where n is the number of elements in Y and m is the number of elements
in X.
Thus, for the given question, $m=5$ and $n=7$. Using these values in the formula, we get
$\begin{align}
& \alpha =\dfrac{7!}{\left( 7-5 \right)!} \\
& \Rightarrow \alpha =\dfrac{7!}{2!} \\
& \Rightarrow \alpha =7\times 6\times 5\times 4\times 3 \\
& \Rightarrow \alpha =2520 \\
\end{align}$
Thus, the required value of $\alpha $ is 2520.
For the calculation of $\beta $, consider the mapping of functions from Y to X. The total number of onto
functions from a set Y having m elements to another set X having n elements, where $m\ge n$ is given by
the formula $\sum\limits_{k=0}^{n}{-{{1}^{k}}}\left( \begin{matrix}
n \\
k \\
\end{matrix} \right){{\left( n-k \right)}^{m}}$.
Thus, we calculate this sum with \[m=7\] and \[n=5\] as
$\begin{align}
& \beta =\sum\limits_{k=0}^{5}{{{\left( -1 \right)}^{k}}}\left( \begin{matrix}
5 \\
k \\
\end{matrix} \right){{\left( 5-k \right)}^{7}} \\
& \Rightarrow \beta ={{\left( -1 \right)}^{0}}\left( \begin{matrix}
5 \\
0 \\
\end{matrix} \right){{\left( 5-0 \right)}^{7}}+{{\left( -1 \right)}^{1}}\left( \begin{matrix}
5 \\
1 \\
\end{matrix} \right){{\left( 5-1 \right)}^{7}}+{{\left( -1 \right)}^{2}}\left( \begin{matrix}
5 \\
2 \\
\end{matrix} \right){{\left( 5-2 \right)}^{7}}+{{\left( -1 \right)}^{3}}\left( \begin{matrix}
5 \\
3 \\
\end{matrix} \right){{\left( 5-3 \right)}^{7}} \\
& \ \ \ \ \ \ \ \ \ \ +{{\left( -1 \right)}^{4}}\left( \begin{matrix}
5 \\
4 \\
\end{matrix} \right){{\left( 5-4 \right)}^{7}}+{{\left( -1 \right)}^{5}}\left( \begin{matrix}
5 \\
5 \\
\end{matrix} \right){{\left( 5-5 \right)}^{7}} \\
& \Rightarrow \beta =1\times {{5}^{7}}-5\times {{4}^{7}}+10\times {{3}^{7}}-10\times
{{2}^{7}}+5\times {{1}^{7}} \\
& \Rightarrow \beta =5\left( {{5}^{6}}-{{4}^{7}} \right)+10\left( 2187-128 \right)+5 \\
& \Rightarrow \beta =5\left( 15625-16384 \right)+10\times 2059+5 \\
& \Rightarrow \beta =5\times \left( -759 \right)+20590+5 \\
& \Rightarrow \beta =20595-3795 \\
& \Rightarrow \beta =16800 \\
\end{align}$
Thus, the value of $\beta $ comes out to be 16800. This gives the value of $\dfrac{1}{51}\left( \beta -
\alpha \right)$ as
$\begin{align}
& \dfrac{1}{51}\left( \beta -\alpha \right)=\dfrac{1}{51}\left( 16800-2520 \right) \\
& \Rightarrow \dfrac{1}{51}\left( \beta -\alpha \right)=\dfrac{1}{51}\left( 14280 \right) \\
& \Rightarrow \dfrac{1}{51}\left( \beta -\alpha \right)=280 \\
\end{align}$
Thus the required value of $\dfrac{1}{51}\left( \beta -\alpha \right)$ is 280.
Note: The conditions for the calculation of one-one function and the calculation of the number of onto
functions are very important and to be kept in mind. These conditions, $n\ge m$ for one-one functions
and $m\ge n$ for onto functions is not only preliminary to the application of formulae but also necessary
for the existence of one-one and onto functions. If these conditions are violated, the number of one-one
functions and onto functions will both become 0 in their respective cases.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE