Answer
Verified
398.7k+ views
Hint: Here we are given to find the number of possible ordered triplets that can be formed such that product of those three values is equal to \[105\]. To do this we will use the method of prime numbers, where we write prime numbers with their powers, needed for the factorization of \[105\]. After finding the factors we find the possible triplets. Then we use those prime numbers to find other factors also and find the total possible triplets.
Formula used: Total numbers of possible ways to organize three things \[a,b,b\] where two things are common is given by \[\dfrac{{3!}}{{2!}}\].
Total numbers of possible ways to organize three things \[a,b,c\] are \[3!\].
Complete step-by-step solution:
Here we have to factorize \[105\] using prime numbers. We can see that we can write \[105\] as,
\[105 = {3^1}{5^1}{7^1}\]
Hence we get the factors as \[3,5,7\]. Now we have to find the possible triplets that can be formed by these numbers. We see that,
\[3\] can be written at any place be it \[x,y\,or\,z\]. Same way numbers \[5and7\] can also be written.
Hence, total possible triplets \[ = 3!\].
Same,
For \[105 = 35 \times 3 \times 1\], we get possible triplets as \[3! = 6\]
For \[105 = 21 \times 5 \times 1\], we get possible triplets as \[3! = 6\]
For \[105 = 7 \times 15 \times 1\], we get possible triplets as \[3! = 6\]
For \[105 = 105 \times 1 \times 1\], as two factors are same, we get possible triplets as \[\dfrac{{3!}}{{2!}} = 3\]
Hence we get possible triplets as, \[6 + 6 + 6 + 6 + 3 = 27\]
So answer is B).
Note: Whenever we have to find the number of factors of any big number, we should always try to find them through the prime number method and then find other factors after multiplying them with one another as we have done here.
Formula used: Total numbers of possible ways to organize three things \[a,b,b\] where two things are common is given by \[\dfrac{{3!}}{{2!}}\].
Total numbers of possible ways to organize three things \[a,b,c\] are \[3!\].
Complete step-by-step solution:
Here we have to factorize \[105\] using prime numbers. We can see that we can write \[105\] as,
\[105 = {3^1}{5^1}{7^1}\]
Hence we get the factors as \[3,5,7\]. Now we have to find the possible triplets that can be formed by these numbers. We see that,
\[3\] can be written at any place be it \[x,y\,or\,z\]. Same way numbers \[5and7\] can also be written.
Hence, total possible triplets \[ = 3!\].
Same,
For \[105 = 35 \times 3 \times 1\], we get possible triplets as \[3! = 6\]
For \[105 = 21 \times 5 \times 1\], we get possible triplets as \[3! = 6\]
For \[105 = 7 \times 15 \times 1\], we get possible triplets as \[3! = 6\]
For \[105 = 105 \times 1 \times 1\], as two factors are same, we get possible triplets as \[\dfrac{{3!}}{{2!}} = 3\]
Hence we get possible triplets as, \[6 + 6 + 6 + 6 + 3 = 27\]
So answer is B).
Note: Whenever we have to find the number of factors of any big number, we should always try to find them through the prime number method and then find other factors after multiplying them with one another as we have done here.
Recently Updated Pages
For a simple pendulum a graph is plotted between its class 11 physics JEE_Main
A particle executes simple harmonic motion with a frequency class 11 physics JEE_Main
Capacity of a parallel plate condenser is 10F when class null phy sec 1 null
At what temperature will the total KE of 03 mol of class 11 chemistry JEE_Main
ABC is a right angled triangular plate of uniform thickness class 11 phy sec 1 JEE_Main
The linear velocity perpendicular to the radius vector class 11 physics JEE_Main
Trending doubts
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
State the differences between manure and fertilize class 8 biology CBSE
Who is known as Tutie Hind A Saint Kabir B Amir Khusro class 8 social science CBSE
Who is the author of Kadambari AKalidas B Panini C class 8 social science CBSE
Advantages and disadvantages of science