Answer
Verified
496.8k+ views
Hint: Find the probability distribution for X and then find the mean of the distribution. Using the mean, you can calculate the variance and standard deviation of X.
Complete step-by-step answer:
It is given that X denotes the sum of the numbers obtained when two fair dice are rolled.
X can take values from 2(1 + 1) through 12 (6 + 6). Hence, X can take values 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12.
We know that the total outcome when two dice are rolled is 6 \[ \times \] 6, that is 36.
Let us find the probability distribution of X.
Now, we find the mean of the distribution.
Mean, \[\bar X = \sum {XP(X)} \]
\[\bar X = \dfrac{1}{{36}}\left[ {2 \times 1 + 3 \times 2 + 4 \times 3 + 5 \times 4 + 6 \times 5 + 7 \times 6 + 8 \times 5 + 9 \times 4 + 10 \times 3 + 11 \times 2 + 12 \times 1} \right]\]
\[\bar X = \dfrac{{252}}{{36}}\]
\[\bar X = 7\]
We now find the variance of the distribution as follows:
Variance, \[{\sigma ^2} = \sum {{X^2}P(X) - {{\bar X}^2}} \]
\[{\sigma ^2} = \dfrac{1}{{36}}\left[ {{2^2} \times 1 + {3^2} \times 2 + {4^2} \times 3 + {5^2} \times 4 + {6^2} \times 5 + {7^2} \times 6 + {8^2} \times 5 + {9^2} \times 4 + {{10}^2} \times 3 + {{11}^2} \times 2 + {{12}^2} \times 1} \right] - {7^2}\]
\[{\sigma ^2} = \dfrac{{1974}}{{36}} - 49\]
\[{\sigma ^2} = \dfrac{{1974 - 1764}}{{36}}\]
\[{\sigma ^2} = \dfrac{{210}}{{36}}\]
\[{\sigma ^2} = \dfrac{{35}}{6}\]
We can calculate the standard deviation by taking the square root of the variance.
\[\sigma = \sqrt {\dfrac{{35}}{6}} \]
Hence, the value of variation is \[\dfrac{{35}}{6}\] and the value of standard deviation is \[\sqrt {\dfrac{{35}}{6}} \].
Note: Mean can also be found by multiplying X with the number of possible outcomes and adding them and dividing by the total number of outcomes in that case, it is not necessary to find the probability of each outcome.
Complete step-by-step answer:
It is given that X denotes the sum of the numbers obtained when two fair dice are rolled.
X can take values from 2(1 + 1) through 12 (6 + 6). Hence, X can take values 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12.
We know that the total outcome when two dice are rolled is 6 \[ \times \] 6, that is 36.
Let us find the probability distribution of X.
X | Possible Outcomes | P(X) |
2 | (1, 1) | \[\dfrac{1}{{36}}\] |
3 | (2, 1) (1, 2) | \[\dfrac{2}{{36}}\] |
4 | (3, 1) (2, 2) (1, 3) | \[\dfrac{3}{{36}}\] |
5 | (4, 1) (3, 2) (2, 3) (1, 4) | \[\dfrac{4}{{36}}\] |
6 | (5, 1) (4, 2) (3, 3) (2, 4) (1, 5) | \[\dfrac{5}{{36}}\] |
7 | (6, 1) (5, 2) (4, 3) (3, 4) (2, 5) (1, 6) | \[\dfrac{6}{{36}}\] |
8 | (6, 2) (5, 3) (4, 4) (3, 5) (2, 6) | \[\dfrac{5}{{36}}\] |
9 | (6, 3) (5, 4) (4, 5) (3, 6) | \[\dfrac{4}{{36}}\] |
10 | (6, 4) (5, 5) (4, 6) | \[\dfrac{3}{{36}}\] |
11 | (6, 5) (5, 4) | \[\dfrac{2}{{36}}\] |
12 | (6, 6) | \[\dfrac{1}{{36}}\] |
Now, we find the mean of the distribution.
Mean, \[\bar X = \sum {XP(X)} \]
\[\bar X = \dfrac{1}{{36}}\left[ {2 \times 1 + 3 \times 2 + 4 \times 3 + 5 \times 4 + 6 \times 5 + 7 \times 6 + 8 \times 5 + 9 \times 4 + 10 \times 3 + 11 \times 2 + 12 \times 1} \right]\]
\[\bar X = \dfrac{{252}}{{36}}\]
\[\bar X = 7\]
We now find the variance of the distribution as follows:
Variance, \[{\sigma ^2} = \sum {{X^2}P(X) - {{\bar X}^2}} \]
\[{\sigma ^2} = \dfrac{1}{{36}}\left[ {{2^2} \times 1 + {3^2} \times 2 + {4^2} \times 3 + {5^2} \times 4 + {6^2} \times 5 + {7^2} \times 6 + {8^2} \times 5 + {9^2} \times 4 + {{10}^2} \times 3 + {{11}^2} \times 2 + {{12}^2} \times 1} \right] - {7^2}\]
\[{\sigma ^2} = \dfrac{{1974}}{{36}} - 49\]
\[{\sigma ^2} = \dfrac{{1974 - 1764}}{{36}}\]
\[{\sigma ^2} = \dfrac{{210}}{{36}}\]
\[{\sigma ^2} = \dfrac{{35}}{6}\]
We can calculate the standard deviation by taking the square root of the variance.
\[\sigma = \sqrt {\dfrac{{35}}{6}} \]
Hence, the value of variation is \[\dfrac{{35}}{6}\] and the value of standard deviation is \[\sqrt {\dfrac{{35}}{6}} \].
Note: Mean can also be found by multiplying X with the number of possible outcomes and adding them and dividing by the total number of outcomes in that case, it is not necessary to find the probability of each outcome.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE