Answer
Verified
495k+ views
$
Rationali{\text{sing the denominator of g}}iven{\text{ }}{{\text{z}}_1} = \dfrac{{2\sqrt 3 + i6\sqrt 7 }}{{6\sqrt 7 + i2\sqrt 3 }} \\
We{\text{ get }}{{\text{z}}_1} = \dfrac{{2\sqrt 3 + i6\sqrt 7 }}{{6\sqrt 7 + i2\sqrt 3 }}{\text{ X }}\dfrac{{6\sqrt 7 - i2\sqrt 3 }}{{6\sqrt 7 - i2\sqrt 3 }} \\
This{\text{ is equal to }}\dfrac{{12\sqrt {21} + 12\sqrt {21} + 252i - 12i}}{{252 + 12}} \\
= {\text{ }}\dfrac{{24\sqrt {21} + 240i}}{{264}}{\text{ = }}\dfrac{{\sqrt {21} }}{{11}} + \dfrac{{10i}}{{11}} \\
Now{\text{ }}\dfrac{{\sqrt {21} }}{{11}} - \dfrac{{10i}}{{11}} = {\text{ }}\overline {{{\text{z}}_1}} \\
Now{\text{ doing this same rationalising with the given }}{{\text{z}}_2} = \dfrac{{\sqrt {11} + i3\sqrt 3 }}{{3\sqrt 3 - i\sqrt {11} }} \\
{\text{We get }}{{\text{z}}_2} = \dfrac{{\sqrt {11} + i3\sqrt 3 }}{{3\sqrt 3 - i\sqrt {11} }}{\text{ X }}\dfrac{{3\sqrt 3 + i\sqrt {11} }}{{3\sqrt 3 + i\sqrt {11} }}{\text{ }} \\
{\text{ = }}\dfrac{{3\sqrt {143} - 3\sqrt {143} + 117i + 11i}}{{117 + 11}} \\
We{\text{ get }}\dfrac{{128i}}{{128}} = i \\
So{\text{ our }}i = {\text{ }}\overline {{{\text{z}}_2}} \\
Now{\text{ we will find }}\dfrac{1}{{{z_1}}}{\text{ it is equal to }}\dfrac{{\overline {{z_1}} }}{{{{\left| {{z_1}} \right|}^2}}} \\
Hence{\text{ }}\dfrac{1}{{{z_1}}} = \dfrac{{\dfrac{{\sqrt {21} }}{{11}} - \dfrac{{10i}}{{11}}}}{{\sqrt {\dfrac{{21}}{{121}} + \dfrac{{100}}{{121}}} }}{\text{ = }}\dfrac{{\sqrt {21} }}{{11}} - \dfrac{{10i}}{{11}} = {\text{ }}\overline {{{\text{z}}_1}} {\text{ }} \\
{\text{Similarly }}\dfrac{1}{{{z_2}}}{\text{ = }}\dfrac{{\overline {{z_2}} }}{{{{\left| {{z_2}} \right|}^2}}}{\text{ = }}\dfrac{i}{{\sqrt 1 }} = i = {\text{ }}\overline {{{\text{z}}_2}} \\
Therefore\;\dfrac{1}{{{z_1}}} + \dfrac{1}{{{z_1}}} = \overline {{{\text{z}}_1}} + \overline {{{\text{z}}_2}} = \overline {{z_1} + {z_2}} \\
hence{\text{ }}\left| {\dfrac{1}{{{z_1}}} + \dfrac{1}{{{z_1}}}} \right|{\text{ = }}\left| {\overline {{z_1} + {z_2}} } \right| = \left| {{{\text{z}}_1} + {z_2}} \right|{\text{ as }}\left| {\overline z } \right|{\text{ = }}\left| z \right| \\
So{\text{ }}\left( d \right){\text{ option is the right answer}} \\
Note: {\text{ Whenever we encounter such problem we simply need to rationalise the}} \\
{\text{denominator of given complex numbers and eventually solving will take us to the right track}} \\
\\
$
Rationali{\text{sing the denominator of g}}iven{\text{ }}{{\text{z}}_1} = \dfrac{{2\sqrt 3 + i6\sqrt 7 }}{{6\sqrt 7 + i2\sqrt 3 }} \\
We{\text{ get }}{{\text{z}}_1} = \dfrac{{2\sqrt 3 + i6\sqrt 7 }}{{6\sqrt 7 + i2\sqrt 3 }}{\text{ X }}\dfrac{{6\sqrt 7 - i2\sqrt 3 }}{{6\sqrt 7 - i2\sqrt 3 }} \\
This{\text{ is equal to }}\dfrac{{12\sqrt {21} + 12\sqrt {21} + 252i - 12i}}{{252 + 12}} \\
= {\text{ }}\dfrac{{24\sqrt {21} + 240i}}{{264}}{\text{ = }}\dfrac{{\sqrt {21} }}{{11}} + \dfrac{{10i}}{{11}} \\
Now{\text{ }}\dfrac{{\sqrt {21} }}{{11}} - \dfrac{{10i}}{{11}} = {\text{ }}\overline {{{\text{z}}_1}} \\
Now{\text{ doing this same rationalising with the given }}{{\text{z}}_2} = \dfrac{{\sqrt {11} + i3\sqrt 3 }}{{3\sqrt 3 - i\sqrt {11} }} \\
{\text{We get }}{{\text{z}}_2} = \dfrac{{\sqrt {11} + i3\sqrt 3 }}{{3\sqrt 3 - i\sqrt {11} }}{\text{ X }}\dfrac{{3\sqrt 3 + i\sqrt {11} }}{{3\sqrt 3 + i\sqrt {11} }}{\text{ }} \\
{\text{ = }}\dfrac{{3\sqrt {143} - 3\sqrt {143} + 117i + 11i}}{{117 + 11}} \\
We{\text{ get }}\dfrac{{128i}}{{128}} = i \\
So{\text{ our }}i = {\text{ }}\overline {{{\text{z}}_2}} \\
Now{\text{ we will find }}\dfrac{1}{{{z_1}}}{\text{ it is equal to }}\dfrac{{\overline {{z_1}} }}{{{{\left| {{z_1}} \right|}^2}}} \\
Hence{\text{ }}\dfrac{1}{{{z_1}}} = \dfrac{{\dfrac{{\sqrt {21} }}{{11}} - \dfrac{{10i}}{{11}}}}{{\sqrt {\dfrac{{21}}{{121}} + \dfrac{{100}}{{121}}} }}{\text{ = }}\dfrac{{\sqrt {21} }}{{11}} - \dfrac{{10i}}{{11}} = {\text{ }}\overline {{{\text{z}}_1}} {\text{ }} \\
{\text{Similarly }}\dfrac{1}{{{z_2}}}{\text{ = }}\dfrac{{\overline {{z_2}} }}{{{{\left| {{z_2}} \right|}^2}}}{\text{ = }}\dfrac{i}{{\sqrt 1 }} = i = {\text{ }}\overline {{{\text{z}}_2}} \\
Therefore\;\dfrac{1}{{{z_1}}} + \dfrac{1}{{{z_1}}} = \overline {{{\text{z}}_1}} + \overline {{{\text{z}}_2}} = \overline {{z_1} + {z_2}} \\
hence{\text{ }}\left| {\dfrac{1}{{{z_1}}} + \dfrac{1}{{{z_1}}}} \right|{\text{ = }}\left| {\overline {{z_1} + {z_2}} } \right| = \left| {{{\text{z}}_1} + {z_2}} \right|{\text{ as }}\left| {\overline z } \right|{\text{ = }}\left| z \right| \\
So{\text{ }}\left( d \right){\text{ option is the right answer}} \\
Note: {\text{ Whenever we encounter such problem we simply need to rationalise the}} \\
{\text{denominator of given complex numbers and eventually solving will take us to the right track}} \\
\\
$
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE