Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Let z1=23+i6767+i23 and z2=11+i313313+i11, then, |1z1+1z2| is equal to

(a)47

(b)264

(c) |z1z2|

(d) |z1+z2|

(e) |z1z2|



Answer
VerifiedVerified
536.4k+ views
like imagedislike image

Hint: Use rationalisation to simplify the expression and use the properties of complex numbers for further solving.


Complete step-by-step answer:

Rationalising z1,

z1=23+i6767+i23

We get,

z1=23+i6767+i23×67i2367i23

=1221+1221+252i12i252+12

=2421+240i264 = 2111+10i11

Now,

211110i11= z1

Now, rationalising z2,

z2=11+i313313i11

We get,

z2=11+i313313i11×313+i11313+i11 

=31433143+117i+11i117+11

=128i128=i

i=z2

We know that, 1z1=z1|z1|2

Hence, 1z1=211110i11(21121+100121)2 = 211110i11= z1 

Similarly, 1z2 = z2|z2|2 = i1=i= z2

1z1+1z2=z1+z2=z1+z2

Hence,  |1z1+1z2| = |z1+z2|=|z1+z2|(|z| = |z|)

So, option d is the right answer.


Note: Whenever we encounter such a problem, we simply need to use rationalisation technique and the properties of complex numbers to reach the correct answer. Mistakes can be avoided while finding the products. Remember that i2=1.