
What is the limit as x approaches infinity of \[{{e}^{x}}\]?
Answer
518.1k+ views
Hint: In this type of question we have to use the concept of limit at infinity. We know that the idea of a limit is the basis of all calculus. Also we know that, a limit tells us the value that the given function approaches as that function’s input approaches to some number.
Complete step by step answer:
In the given question, we have to find the limit of \[{{e}^{x}}\] as \[x\] approaches to \[\infty \].
Hence, the function is \[f\left( x \right)={{e}^{x}}\] and limit as \[x\] approaches to \[\infty \] i.e. \[x \to \infty \]
\[\Rightarrow \displaystyle \lim_{x \to \infty }f\left( x \right)=\displaystyle \lim_{x \to \infty }{{e}^{x}}\]
By applying the value of \[x\] as \[\infty \], we can write,
\[\Rightarrow \displaystyle \lim_{x \to \infty }{{e}^{x}}={{e}^{\infty }}\]
As we know that, the domain of \[{{e}^{x}}\] is the whole of \[\mathbb{R}\] and the range is \[\left( 0,\infty \right)\]. Also \[{{e}^{x}}\] is continuous function defined on the whole of \[\mathbb{R}\] and infinitely differentiable, with \[\dfrac{d}{dx}{{e}^{x}}={{e}^{x}}\].
Hence, the value of \[{{e}^{\infty }}=\infty \]
\[\Rightarrow \displaystyle \lim_{x \to \infty }{{e}^{x}}=\infty \]
Thus, the limit as \[x\] approaches \[\infty \] of \[{{e}^{x}}\] is \[\infty \].
Note: In this type of question one of the students may state the result with the help of a graph also. The function \[f\left( x \right)={{e}^{x}}\] is an equation in which the variable is an exponent, and the graph is exponentially increasing with respect to \[x\]. Where, \[x\] is a real number and \[e\] is a positive constant. The graph for \[f\left( x \right)={{e}^{x}}\] is as follows:
From the above graph of \[{{e}^{x}}\] with respect to \[x\] we can clearly observe that as \[x\] approaches to \[\infty \], the function \[{{e}^{x}}\] also approaches to \[\infty \].
Thus, the limit as \[x\] approaches \[\infty \] of \[{{e}^{x}}\] is \[\infty \].
Complete step by step answer:
In the given question, we have to find the limit of \[{{e}^{x}}\] as \[x\] approaches to \[\infty \].
Hence, the function is \[f\left( x \right)={{e}^{x}}\] and limit as \[x\] approaches to \[\infty \] i.e. \[x \to \infty \]
\[\Rightarrow \displaystyle \lim_{x \to \infty }f\left( x \right)=\displaystyle \lim_{x \to \infty }{{e}^{x}}\]
By applying the value of \[x\] as \[\infty \], we can write,
\[\Rightarrow \displaystyle \lim_{x \to \infty }{{e}^{x}}={{e}^{\infty }}\]
As we know that, the domain of \[{{e}^{x}}\] is the whole of \[\mathbb{R}\] and the range is \[\left( 0,\infty \right)\]. Also \[{{e}^{x}}\] is continuous function defined on the whole of \[\mathbb{R}\] and infinitely differentiable, with \[\dfrac{d}{dx}{{e}^{x}}={{e}^{x}}\].
Hence, the value of \[{{e}^{\infty }}=\infty \]
\[\Rightarrow \displaystyle \lim_{x \to \infty }{{e}^{x}}=\infty \]
Thus, the limit as \[x\] approaches \[\infty \] of \[{{e}^{x}}\] is \[\infty \].
Note: In this type of question one of the students may state the result with the help of a graph also. The function \[f\left( x \right)={{e}^{x}}\] is an equation in which the variable is an exponent, and the graph is exponentially increasing with respect to \[x\]. Where, \[x\] is a real number and \[e\] is a positive constant. The graph for \[f\left( x \right)={{e}^{x}}\] is as follows:
From the above graph of \[{{e}^{x}}\] with respect to \[x\] we can clearly observe that as \[x\] approaches to \[\infty \], the function \[{{e}^{x}}\] also approaches to \[\infty \].
Thus, the limit as \[x\] approaches \[\infty \] of \[{{e}^{x}}\] is \[\infty \].
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

