What is the limit as x approaches infinity of $\sin \left( x \right)$?
Answer
Verified
421.2k+ views
Hint: Assume the required limit as L. Now, to find the value of $\displaystyle \lim_{x \to \infty }\left( \sin x \right)$ first we will draw the graph of the sine function. In the next step we will observe the changes in the graph while we move towards infinity on the x – axis. If the value will be converging to a particular defined number then that will be our answer otherwise we will say that the limit does not exist. We will use the fact $-1\le \sin x\le 1$.
Complete step by step solution:
Here we have been asked to find the limit of the sine function as the domain value, i.e. x, tends to infinity.
Let us assume the limit value as L so mathematically we have,
$\Rightarrow L=\displaystyle \lim_{x \to \infty }\left( \sin x \right)$
As we know that infinity is not a real number so we cannot substitute $x=\infty $ directly in the limit to get its value. Also we don’t know the value of $\sin \left( \infty \right)$. So, we need to use the graphical approach to solve this question. First we will draw the graph of the sine function and check if its value converges to a single point or not as x tends to infinity. So let us draw,
From the above graph we can clearly see that the value of sine function oscillates from -1 to +1. As we keep on increasing the value of x the value of $\sin x$ does not converge to a single point. As infinity is not a certain number so let us say at $x=\infty $ we get any particular value of $\sin x$, but this value will not be fixed because even if we will move a little above or below $x=\infty $ the value of $\sin x$ will increase or decrease, however x will still be infinity.
Hence, we can conclude that the limit does not exist.
Note: Here we do not have any other method to solve the question other than the graphical method because there is no any formula for the simplification of the above limit. You can also find the limits of other trigonometric functions using the similar approach if x is tending to infinity. Remember that the limit of the cosine and the tangent function is also non – existent at $x=\infty $.
Complete step by step solution:
Here we have been asked to find the limit of the sine function as the domain value, i.e. x, tends to infinity.
Let us assume the limit value as L so mathematically we have,
$\Rightarrow L=\displaystyle \lim_{x \to \infty }\left( \sin x \right)$
As we know that infinity is not a real number so we cannot substitute $x=\infty $ directly in the limit to get its value. Also we don’t know the value of $\sin \left( \infty \right)$. So, we need to use the graphical approach to solve this question. First we will draw the graph of the sine function and check if its value converges to a single point or not as x tends to infinity. So let us draw,
From the above graph we can clearly see that the value of sine function oscillates from -1 to +1. As we keep on increasing the value of x the value of $\sin x$ does not converge to a single point. As infinity is not a certain number so let us say at $x=\infty $ we get any particular value of $\sin x$, but this value will not be fixed because even if we will move a little above or below $x=\infty $ the value of $\sin x$ will increase or decrease, however x will still be infinity.
Hence, we can conclude that the limit does not exist.
Note: Here we do not have any other method to solve the question other than the graphical method because there is no any formula for the simplification of the above limit. You can also find the limits of other trigonometric functions using the similar approach if x is tending to infinity. Remember that the limit of the cosine and the tangent function is also non – existent at $x=\infty $.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE