![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
How is line emission spectrum produced?
Answer
434.1k+ views
Hint: An emanation line will show up in a range if the source discharges explicit frequencies of radiation. This emanation happens when an iota, component, or particle in an energized state gets back to an arrangement of lower energy.
Complete answer:
As indicated by Bohr, there were just discrete permitted energy levels that the electron could involve. On the off chance that energy was added to a particle (through warmth, power, or light) the iota could assimilate explicit measures of this energy. This would cause the electron (he managed hydrogen in his underlying figurines) to bounce into a higher energy circle, known as a fixed state. Each state was described by a number, n. Assume a given electron hopped from n = 1 (the least conceivable energy) into n = 4. A particularly high-energy electron was supposed to be in an energized state.
After a brief timeframe, the electron would get back to its lower energy level, either in one bounce descending or in a progression of more modest hops through n = 3, n = 2, and so on To take each leap, the particle would need to deliver its overflow energy, which it did as a photon. Since there were just sure energy changes conceivable, just certain shades of light would be seen. (The shade of the light depended on the energy and recurrence of the produced photon.)
Note: At the point when an electron makes a change from a higher energy level to a lower one out of a particle, a photon is delivered with energy equivalent to the distinction in the energy of the levels. Such a range of electromagnetic energy is called discharge range
Complete answer:
As indicated by Bohr, there were just discrete permitted energy levels that the electron could involve. On the off chance that energy was added to a particle (through warmth, power, or light) the iota could assimilate explicit measures of this energy. This would cause the electron (he managed hydrogen in his underlying figurines) to bounce into a higher energy circle, known as a fixed state. Each state was described by a number, n. Assume a given electron hopped from n = 1 (the least conceivable energy) into n = 4. A particularly high-energy electron was supposed to be in an energized state.
After a brief timeframe, the electron would get back to its lower energy level, either in one bounce descending or in a progression of more modest hops through n = 3, n = 2, and so on To take each leap, the particle would need to deliver its overflow energy, which it did as a photon. Since there were just sure energy changes conceivable, just certain shades of light would be seen. (The shade of the light depended on the energy and recurrence of the produced photon.)
Note: At the point when an electron makes a change from a higher energy level to a lower one out of a particle, a photon is delivered with energy equivalent to the distinction in the energy of the levels. Such a range of electromagnetic energy is called discharge range
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Find the value of x if the mode of the following data class 11 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
10 examples of friction in our daily life
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Prokaryotic Cells and Eukaryotic Cells
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
State and prove Bernoullis theorem class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What organs are located on the left side of your body class 11 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How many valence electrons does nitrogen have class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)