How many lines can pass through two distinct points?
Answer
Verified
475.2k+ views
Hint: Slope of a line passing through two distinct points $\left( {{x}_{1}},{{y}_{1}} \right)\ and\ \left( {{x}_{2}},{{y}_{2}} \right)$ will be unique and be equal to $\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$. And a line passing through a point with a given slope is unique. So, only one line can pass through two distinct points.
Complete step-by-step answer:
Let us assume two points $\left( {{x}_{1}},{{y}_{1}} \right)\ and\ \left( {{x}_{2}},{{y}_{2}} \right)$ and two lines AB and CD pass through two points $\left( {{x}_{1}},{{y}_{1}} \right)\ and\ \left( {{x}_{2}},{{y}_{2}} \right)$ is given by,
$m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$
Thus, slope of $AB=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$ and slope of $CD=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$.
Both of these lines are passing through $\left( {{x}_{1}},{{y}_{1}} \right)\ and\ \left( {{x}_{2}},{{y}_{2}} \right)$ .
We can see that, (slope of AB) = (slope of CD)
We know that two different lines passing through a given point cannot have the same slope. So, the lines AB and CD cannot be different. Thus, our assumption is wrong and AB = CD.
Hence, one and only one unique line can pass through two given points.
Note: In the solution, we have mentioned that two different lines passing through a fixed point cannot have the same slopes. Be careful that two different lines can have the same slope but if two different lines are passing through a fixed point, they will have different slopes.
Complete step-by-step answer:
Let us assume two points $\left( {{x}_{1}},{{y}_{1}} \right)\ and\ \left( {{x}_{2}},{{y}_{2}} \right)$ and two lines AB and CD pass through two points $\left( {{x}_{1}},{{y}_{1}} \right)\ and\ \left( {{x}_{2}},{{y}_{2}} \right)$ is given by,
$m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$
Thus, slope of $AB=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$ and slope of $CD=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$.
Both of these lines are passing through $\left( {{x}_{1}},{{y}_{1}} \right)\ and\ \left( {{x}_{2}},{{y}_{2}} \right)$ .
We can see that, (slope of AB) = (slope of CD)
We know that two different lines passing through a given point cannot have the same slope. So, the lines AB and CD cannot be different. Thus, our assumption is wrong and AB = CD.
Hence, one and only one unique line can pass through two given points.
Note: In the solution, we have mentioned that two different lines passing through a fixed point cannot have the same slopes. Be careful that two different lines can have the same slope but if two different lines are passing through a fixed point, they will have different slopes.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE