Answer
Verified
463.2k+ views
Hint: Slope of a line passing through two distinct points $\left( {{x}_{1}},{{y}_{1}} \right)\ and\ \left( {{x}_{2}},{{y}_{2}} \right)$ will be unique and be equal to $\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$. And a line passing through a point with a given slope is unique. So, only one line can pass through two distinct points.
Complete step-by-step answer:
Let us assume two points $\left( {{x}_{1}},{{y}_{1}} \right)\ and\ \left( {{x}_{2}},{{y}_{2}} \right)$ and two lines AB and CD pass through two points $\left( {{x}_{1}},{{y}_{1}} \right)\ and\ \left( {{x}_{2}},{{y}_{2}} \right)$ is given by,
$m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$
Thus, slope of $AB=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$ and slope of $CD=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$.
Both of these lines are passing through $\left( {{x}_{1}},{{y}_{1}} \right)\ and\ \left( {{x}_{2}},{{y}_{2}} \right)$ .
We can see that, (slope of AB) = (slope of CD)
We know that two different lines passing through a given point cannot have the same slope. So, the lines AB and CD cannot be different. Thus, our assumption is wrong and AB = CD.
Hence, one and only one unique line can pass through two given points.
Note: In the solution, we have mentioned that two different lines passing through a fixed point cannot have the same slopes. Be careful that two different lines can have the same slope but if two different lines are passing through a fixed point, they will have different slopes.
Complete step-by-step answer:
Let us assume two points $\left( {{x}_{1}},{{y}_{1}} \right)\ and\ \left( {{x}_{2}},{{y}_{2}} \right)$ and two lines AB and CD pass through two points $\left( {{x}_{1}},{{y}_{1}} \right)\ and\ \left( {{x}_{2}},{{y}_{2}} \right)$ is given by,
$m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$
Thus, slope of $AB=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$ and slope of $CD=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$.
Both of these lines are passing through $\left( {{x}_{1}},{{y}_{1}} \right)\ and\ \left( {{x}_{2}},{{y}_{2}} \right)$ .
We can see that, (slope of AB) = (slope of CD)
We know that two different lines passing through a given point cannot have the same slope. So, the lines AB and CD cannot be different. Thus, our assumption is wrong and AB = CD.
Hence, one and only one unique line can pass through two given points.
Note: In the solution, we have mentioned that two different lines passing through a fixed point cannot have the same slopes. Be careful that two different lines can have the same slope but if two different lines are passing through a fixed point, they will have different slopes.
Recently Updated Pages
The radius of curvature of a plane mirror is a positive class 10 physics CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Select the antonym for the following word from the class 10 english CBSE
Select the synonym for the given word Transparency class 10 english CBSE
Select the given word which means the opposite of the class 10 english CBSE
The purest form of carbon is a Graphite b Diamond c class 10 chemistry CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
What is the meaning of sol in chemistry class 11 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
The capital of British India was transferred from Calcutta class 10 social science CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Capital of the Cheras was A Madurai B Muziri C Uraiyur class 10 social science CBSE
What organs are located on the left side of your body class 11 biology CBSE