
List five irrational numbers between
(a) -1 and 0
(b) -2 and -1
Answer
520.8k+ views
Hint:In this question we have been asked to find 5 rational numbers between -1 and 0 and -2 and -1. Therefore, we should first understand what are rational numbers and then use it to find the required answer.
Complete step-by-step answer:
In this question, we are asked to find rational numbers in a given interval. Therefore, we should understand what rational numbers are first.
A number is said to be a rational number if it can be expressed in the form of where p and q are integers and ……………………(1.1)
i) Considering equation (1.1), we note that, to find rational numbers between -1 and 0, we can find out five fractions of the interval between -1 and 0 which will lie between -1 and 0. As, we have to find 5 numbers, we can divide the interval between -1 and 0 into 6 parts and each part will correspond to one rational number between -1 and 0. Thus, each division should be equal to and the fractions of the interval at which the points lie would be
Now, these numbers are just fractions of the interval, therefore to obtain the actual numbers which lie in the interval, we should add these numbers to the starting point of the interval.
Thus, the five rational numbers lying between -1 and 0 will be which are the same as
ii) Considering equation (1.1), we note that, to find rational numbers between -2 and -1, we can find out five fractions of the interval between -2 and -1 which will lie between -2 and -1. As, we have to find 5 numbers, we can divide the interval between -2 and -1 into 6 parts and each part will correspond to one rational number between -2 and -1. Thus, each division should be equal to and the fractions of the interval at which the points lie would be
Now, these numbers are just fractions of the interval, therefore to obtain the actual numbers which lie in the interval, we should add these numbers to the starting point of the interval.
Thus, the five rational numbers lying between -2 and -1 will be which are the same as
Note: We should note that to find five rational numbers, we had to divide the interval into 6 parts because the sixth part will be equal to and adding it with the starting point will give a value equal to the ending point of the interval and thus will not lie strictly inside the interval. Also, one other method to find five rational numbers is to use the property that any number having non-recurring decimal representation is a rational number. Thus, the numbers , , , and will also be valid answers to part a of the question. Also, as subtraction of two rational numbers is also a rational number, we could have obtained the five rational numbers between -2 and -1 by subtracting the obtained numbers in part (i) by 1.
Complete step-by-step answer:
In this question, we are asked to find rational numbers in a given interval. Therefore, we should understand what rational numbers are first.
A number is said to be a rational number if it can be expressed in the form of
i) Considering equation (1.1), we note that, to find rational numbers between -1 and 0, we can find out five fractions of the interval between -1 and 0 which will lie between -1 and 0. As, we have to find 5 numbers, we can divide the interval between -1 and 0 into 6 parts and each part will correspond to one rational number between -1 and 0. Thus, each division should be equal to
Now, these numbers are just fractions of the interval, therefore to obtain the actual numbers which lie in the interval, we should add these numbers to the starting point of the interval.
Thus, the five rational numbers lying between -1 and 0 will be
ii) Considering equation (1.1), we note that, to find rational numbers between -2 and -1, we can find out five fractions of the interval between -2 and -1 which will lie between -2 and -1. As, we have to find 5 numbers, we can divide the interval between -2 and -1 into 6 parts and each part will correspond to one rational number between -2 and -1. Thus, each division should be equal to
Now, these numbers are just fractions of the interval, therefore to obtain the actual numbers which lie in the interval, we should add these numbers to the starting point of the interval.
Thus, the five rational numbers lying between -2 and -1 will be
Note: We should note that to find five rational numbers, we had to divide the interval into 6 parts because the sixth part will be equal to
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 4 Maths: Engaging Questions & Answers for Success

Master Class 4 English: Engaging Questions & Answers for Success

Trending doubts
Give 10 examples for herbs , shrubs , climbers , creepers

How many millions make a billion class 6 maths CBSE

Number of Prime between 1 to 100 is class 6 maths CBSE

Four bells toll together at 900am They toll after 7811 class 6 maths CBSE

Name the countries which are larger than India class 6 social science CBSE

1 lakh Thousand class 6 maths CBSE
