Answer
Verified
497.1k+ views
Hint: Put ‘z = x+iy’, and now simplify the given expression, $\left( \dfrac{z-1-i}{z-2} \right)$ and convert it to standard form of complex number i.e., ‘a+ib’. Now, use the formula of argument i.e., ${{\tan }^{-1}}\left( \dfrac{b}{a} \right)$ for complex number, ‘a+ib’, to get locus of z.
Complete step-by-step answer:
Let us suppose ‘z = x+iy’ in the given expression.
$\arg \left( \dfrac{z-1-i}{z-2} \right)=\dfrac{\pi }{3}..................\left( i \right)$
Put ‘z = (x+iy)’, we get
$\Rightarrow$ $\arg \left( \dfrac{x+iy-1-i}{x+iy-2} \right)=\dfrac{\pi }{3}$
Now, let us convert the above complex number to ‘a+ib’ by multiplying the conjugate of the denominator. Hence, we get
$\Rightarrow$ $\arg \left( \dfrac{\left( x-1 \right)+i\left( y-1 \right)}{\left( x-2 \right)+iy}\times \dfrac{\left( x-2 \right)-iy}{\left( x-2 \right)-iy} \right)=\dfrac{\pi }{3}$
$\Rightarrow$ $\arg \left( \dfrac{\left( \left( x-1 \right)+i\left( y-1 \right) \right)\times \left( \left( x-2 \right)-iy \right)}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}} \right)=\dfrac{\pi }{3}$
$\Rightarrow$ $\arg \left( \dfrac{\left( x-1 \right)\left( x-2 \right)+y\left( y-1 \right)+i\left( y-1 \right)\left( x-2 \right)-iy\left( x-1 \right)}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}} \right)=\dfrac{\pi }{3}$
Opening the brackets, we get
$\Rightarrow$ $\arg \left( \dfrac{\left( {{x}^{2}}-3x+2+{{y}^{2}}-y \right)+i\left( xy-2y-x+2-xy+y \right)}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}} \right)=\dfrac{\pi }{3}$
$\Rightarrow$ $\arg \left( \dfrac{\left( {{x}^{2}}+{{y}^{2}}-3x-y+2 \right)+i\left( -x-y+2 \right)}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}} \right)=\dfrac{\pi }{3}$
$\Rightarrow$ $\arg \left( \dfrac{\left( {{x}^{2}}+{{y}^{2}}-3x-y+2 \right)}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}}+i\dfrac{\left( -x-y+2 \right)}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}} \right)=\dfrac{\pi }{3}$……………….(ii)
Now, we know that argument of any complex number ‘a+ib’ is given by the relation
$\arg \left( a+ib \right)={{\tan }^{-1}}\left( \dfrac{b}{a} \right)..............\left( iii \right)$
Hence, using equation (iii), we can get argument of equation (ii) as
$\Rightarrow$ ${{\tan }^{-1}}\left( \dfrac{\dfrac{-x-y+2}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}}}{\dfrac{{{x}^{2}}+{{y}^{2}}-3x-y+2}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}}} \right)=\dfrac{\pi }{3}$
Cancelling the like terms and transferring ${{\tan }^{-1}}$ function to other side, hence we get
$\Rightarrow$ $\dfrac{-x-y+2}{{{x}^{2}}+{{y}^{2}}-3x-y+2}=\tan \dfrac{\pi }{3}$
Substituting the value of right hand side, we get
$\Rightarrow$ $\dfrac{-x-y+2}{{{x}^{2}}+{{y}^{2}}-3x-y+2}=\sqrt{3}$
Now, on cross multiplying above relation, we get an equation as
$\Rightarrow$ $\dfrac{-x-y+2}{\sqrt{3}}={{x}^{2}}+{{y}^{2}}-3x-y+2$
${{x}^{2}}+{{y}^{2}}-3x-y+2=\dfrac{-x}{\sqrt{3}}-\dfrac{y}{\sqrt{3}}+\dfrac{2}{\sqrt{3}}$
${{x}^{2}}+{{y}^{2}}+x\left( \dfrac{1}{\sqrt{3}}-3 \right)+y\left( \dfrac{1}{\sqrt{3}}-1 \right)+2-\dfrac{2}{\sqrt{3}}=0...........\left( iv \right)$
Now, on comparing the above equation with the standard equation of circle, i.e.,
${{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0$
We can observe that equation (iv) is representing an equation of circle, where
$2g=\left( \dfrac{1}{\sqrt{3}}-3 \right),2f=\left( \dfrac{1}{\sqrt{3}}-1 \right),c=2-\dfrac{2}{\sqrt{3}}$
Hence, the locus of point ‘z’ by the given relation $\arg \left( \dfrac{z-1-i}{z-2} \right)=\dfrac{\pi }{3}$ is a circle.
Note: One can prove the locus of the points of ‘z’ from a given equation by using the property of a circle that is angle formed by a chord in the same segment will represent a circle. But this will be a lengthy process.
Hence, given relation can be generalize such that equation
$\arg \left( \dfrac{z-1-i}{z-2} \right)=\theta \left( \theta \ne \pi \right)$or$\left( \theta \ne 0 \right)$
Will always represent a circle where $\theta $ is less than ${{180}^{\circ }}$ .
Complete step-by-step answer:
Let us suppose ‘z = x+iy’ in the given expression.
$\arg \left( \dfrac{z-1-i}{z-2} \right)=\dfrac{\pi }{3}..................\left( i \right)$
Put ‘z = (x+iy)’, we get
$\Rightarrow$ $\arg \left( \dfrac{x+iy-1-i}{x+iy-2} \right)=\dfrac{\pi }{3}$
Now, let us convert the above complex number to ‘a+ib’ by multiplying the conjugate of the denominator. Hence, we get
$\Rightarrow$ $\arg \left( \dfrac{\left( x-1 \right)+i\left( y-1 \right)}{\left( x-2 \right)+iy}\times \dfrac{\left( x-2 \right)-iy}{\left( x-2 \right)-iy} \right)=\dfrac{\pi }{3}$
$\Rightarrow$ $\arg \left( \dfrac{\left( \left( x-1 \right)+i\left( y-1 \right) \right)\times \left( \left( x-2 \right)-iy \right)}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}} \right)=\dfrac{\pi }{3}$
$\Rightarrow$ $\arg \left( \dfrac{\left( x-1 \right)\left( x-2 \right)+y\left( y-1 \right)+i\left( y-1 \right)\left( x-2 \right)-iy\left( x-1 \right)}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}} \right)=\dfrac{\pi }{3}$
Opening the brackets, we get
$\Rightarrow$ $\arg \left( \dfrac{\left( {{x}^{2}}-3x+2+{{y}^{2}}-y \right)+i\left( xy-2y-x+2-xy+y \right)}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}} \right)=\dfrac{\pi }{3}$
$\Rightarrow$ $\arg \left( \dfrac{\left( {{x}^{2}}+{{y}^{2}}-3x-y+2 \right)+i\left( -x-y+2 \right)}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}} \right)=\dfrac{\pi }{3}$
$\Rightarrow$ $\arg \left( \dfrac{\left( {{x}^{2}}+{{y}^{2}}-3x-y+2 \right)}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}}+i\dfrac{\left( -x-y+2 \right)}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}} \right)=\dfrac{\pi }{3}$……………….(ii)
Now, we know that argument of any complex number ‘a+ib’ is given by the relation
$\arg \left( a+ib \right)={{\tan }^{-1}}\left( \dfrac{b}{a} \right)..............\left( iii \right)$
Hence, using equation (iii), we can get argument of equation (ii) as
$\Rightarrow$ ${{\tan }^{-1}}\left( \dfrac{\dfrac{-x-y+2}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}}}{\dfrac{{{x}^{2}}+{{y}^{2}}-3x-y+2}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}}} \right)=\dfrac{\pi }{3}$
Cancelling the like terms and transferring ${{\tan }^{-1}}$ function to other side, hence we get
$\Rightarrow$ $\dfrac{-x-y+2}{{{x}^{2}}+{{y}^{2}}-3x-y+2}=\tan \dfrac{\pi }{3}$
Substituting the value of right hand side, we get
$\Rightarrow$ $\dfrac{-x-y+2}{{{x}^{2}}+{{y}^{2}}-3x-y+2}=\sqrt{3}$
Now, on cross multiplying above relation, we get an equation as
$\Rightarrow$ $\dfrac{-x-y+2}{\sqrt{3}}={{x}^{2}}+{{y}^{2}}-3x-y+2$
${{x}^{2}}+{{y}^{2}}-3x-y+2=\dfrac{-x}{\sqrt{3}}-\dfrac{y}{\sqrt{3}}+\dfrac{2}{\sqrt{3}}$
${{x}^{2}}+{{y}^{2}}+x\left( \dfrac{1}{\sqrt{3}}-3 \right)+y\left( \dfrac{1}{\sqrt{3}}-1 \right)+2-\dfrac{2}{\sqrt{3}}=0...........\left( iv \right)$
Now, on comparing the above equation with the standard equation of circle, i.e.,
${{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0$
We can observe that equation (iv) is representing an equation of circle, where
$2g=\left( \dfrac{1}{\sqrt{3}}-3 \right),2f=\left( \dfrac{1}{\sqrt{3}}-1 \right),c=2-\dfrac{2}{\sqrt{3}}$
Hence, the locus of point ‘z’ by the given relation $\arg \left( \dfrac{z-1-i}{z-2} \right)=\dfrac{\pi }{3}$ is a circle.
Note: One can prove the locus of the points of ‘z’ from a given equation by using the property of a circle that is angle formed by a chord in the same segment will represent a circle. But this will be a lengthy process.
Hence, given relation can be generalize such that equation
$\arg \left( \dfrac{z-1-i}{z-2} \right)=\theta \left( \theta \ne \pi \right)$or$\left( \theta \ne 0 \right)$
Will always represent a circle where $\theta $ is less than ${{180}^{\circ }}$ .
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE