Loschmidt number is equal to:
$(a)$ Molecules present in 2ml of gas at STP
$(b){\text{ 2}}{\text{.69}} \times {\text{1}}{{\text{0}}^{19}}$ Molecules of gas
$(c){\text{ 4}}{\text{.46}} \times {10^{ - 5}}$Mole of gas
$(d)$ Both B and C
Answer
Verified
497.4k+ views
Hint – In this question use the concept that Loschmidt number is simply a constant that defines a unit of number density for substances mainly gases. Use the basic definition of Loschmidt distance to get the right option.
Complete answer:
Being a measure of number density, the Loschmidt constant is used to define the amagat, a practical unit of number density for gases and other substances:
Now the Loschmidt constant is exactly 1 amagat.
And 1 amagat = n0 = \[2.6867811 \times {10^{25}}\;{m^{ - 3}}\].
Which is approximately equal to \[2.69 \times {10^{25}}\;{m^{ - 3}}\]
Loschmidt number: The number of molecules in one cubic centimeter of an ideal gas at standard temperature and pressure is equal to $2.69 \times {10^{19}}$ molecules of gas or $4.46 \times {10^{ - 5}}$ mole of gas.
As we know that Avogadro number = $6.023 \times {10^{23}}$
So Loschmidt number = $\dfrac{{{\text{molecules of gas}}}}{{{\text{Avagadro number}}}} = \dfrac{{2.69 \times {{10}^{19}}}}{{6.023 \times {{10}^{23}}}} = 4.46 \times {10^{ - 5}}{\text{ mole of gas}}$.
So this is the required answer.
Hence option (D) is the correct answer.
Note – It is required to have a good understanding of Avogadro's number, it is a proportion that relates molar mass on an atomic scale to physical mass on human scale or in other words it is the number of elementary particles that can be molecules, atoms or compounds per mole of a substance.
Complete answer:
Being a measure of number density, the Loschmidt constant is used to define the amagat, a practical unit of number density for gases and other substances:
Now the Loschmidt constant is exactly 1 amagat.
And 1 amagat = n0 = \[2.6867811 \times {10^{25}}\;{m^{ - 3}}\].
Which is approximately equal to \[2.69 \times {10^{25}}\;{m^{ - 3}}\]
Loschmidt number: The number of molecules in one cubic centimeter of an ideal gas at standard temperature and pressure is equal to $2.69 \times {10^{19}}$ molecules of gas or $4.46 \times {10^{ - 5}}$ mole of gas.
As we know that Avogadro number = $6.023 \times {10^{23}}$
So Loschmidt number = $\dfrac{{{\text{molecules of gas}}}}{{{\text{Avagadro number}}}} = \dfrac{{2.69 \times {{10}^{19}}}}{{6.023 \times {{10}^{23}}}} = 4.46 \times {10^{ - 5}}{\text{ mole of gas}}$.
So this is the required answer.
Hence option (D) is the correct answer.
Note – It is required to have a good understanding of Avogadro's number, it is a proportion that relates molar mass on an atomic scale to physical mass on human scale or in other words it is the number of elementary particles that can be molecules, atoms or compounds per mole of a substance.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE