Answer
Verified
499.8k+ views
Hint: Use compound interest formula for the calculation of amount $A$, given by: \[A=P{{\left( 1+\dfrac{r}{n} \right)}^{nt}}\]. From this calculate amount $A$ after \[t=2\text{ years}\] and \[t=3\text{ years}\] and then take the difference for the calculation of interest obtained in\[3\text{rd year}\].
Complete step-by-step answer:
Compound interest is the addition of interest to the principal sum of a loan or deposit. It is the result of reinvesting interest, rather than paying it out, so the interest in the next period is then earned on the principal sum plus previously accumulated interest.
The total accumulated amount $A$ , on the principal sum \[P\] plus compound interest $I$ is given by the formula \[A=P{{\left( 1+\dfrac{r}{n} \right)}^{nt}}\].
Here, \[A\] is the amount obtained, $t$ is the number of years, \[r\] is the rate, $P$ is the principal and \[n\] is the number of times the interest is given in a year.
The total compound interest generated is given by: $I=A-P$.
Now, we have been given that:
$P=\text{Rs 8000}$, $r=5%=\dfrac{5}{100}=0.05$, $n=1$.
(i) The amount credited at the end of the second year i.e. $t=2\text{ years}$ can be calculated as:
\[\begin{align}
& \therefore {{A}_{2}}=8000{{\left( 1+\dfrac{0.05}{1} \right)}^{1\times 2}} \\
& \text{ }=8000{{\left( 1+\dfrac{5}{100} \right)}^{2}} \\
& \text{ }=8000{{\left( \dfrac{100+5}{100} \right)}^{2}} \\
& \text{ }=8000{{\left( \dfrac{105}{100} \right)}^{2}} \\
& \text{ }=8000\times \dfrac{105}{100}\times \dfrac{105}{100} \\
& \therefore {{A}_{2}}=\text{Rs }8820. \\
\end{align}\]
Hence, the credited amount after two years is \[\text{Rs }8820\].
(ii) Now, to calculate the interest for the third year we need to subtract the amount ${{A}_{2}}$ obtained after two years form the amount ${{A}_{3}}$ obtained after three years.
\[\begin{align}
& \therefore {{A}_{3}}=8000{{\left( 1+\dfrac{0.05}{1} \right)}^{1\times 3}} \\
& \text{ }=8000{{\left( 1+\dfrac{5}{100} \right)}^{3}} \\
& \text{ }=8000{{\left( \dfrac{100+5}{100} \right)}^{3}} \\
& \text{ }=8000{{\left( \dfrac{105}{100} \right)}^{3}} \\
& \text{ }=8000\times \dfrac{105}{100}\times \dfrac{105}{100}\times \dfrac{105}{100} \\
& \therefore {{A}_{3}}=\text{Rs 9261}. \\
\end{align}\]
The interest $I$ for the third year is given by:
$\begin{align}
& I={{A}_{3}}-{{A}_{2}} \\
& \text{ }=9261-8820 \\
& \text{ }=441. \\
\end{align}$
Hence, the interest for the third year is \[\text{Rs }441\].
Note: Here, the value of $n$ must be substituted carefully. We have to read the question carefully as it is given that the rate is compounded annually, therefore, $n=1$ is substituted. We must divide the given rate by 100 and then substitute in the equation.
Complete step-by-step answer:
Compound interest is the addition of interest to the principal sum of a loan or deposit. It is the result of reinvesting interest, rather than paying it out, so the interest in the next period is then earned on the principal sum plus previously accumulated interest.
The total accumulated amount $A$ , on the principal sum \[P\] plus compound interest $I$ is given by the formula \[A=P{{\left( 1+\dfrac{r}{n} \right)}^{nt}}\].
Here, \[A\] is the amount obtained, $t$ is the number of years, \[r\] is the rate, $P$ is the principal and \[n\] is the number of times the interest is given in a year.
The total compound interest generated is given by: $I=A-P$.
Now, we have been given that:
$P=\text{Rs 8000}$, $r=5%=\dfrac{5}{100}=0.05$, $n=1$.
(i) The amount credited at the end of the second year i.e. $t=2\text{ years}$ can be calculated as:
\[\begin{align}
& \therefore {{A}_{2}}=8000{{\left( 1+\dfrac{0.05}{1} \right)}^{1\times 2}} \\
& \text{ }=8000{{\left( 1+\dfrac{5}{100} \right)}^{2}} \\
& \text{ }=8000{{\left( \dfrac{100+5}{100} \right)}^{2}} \\
& \text{ }=8000{{\left( \dfrac{105}{100} \right)}^{2}} \\
& \text{ }=8000\times \dfrac{105}{100}\times \dfrac{105}{100} \\
& \therefore {{A}_{2}}=\text{Rs }8820. \\
\end{align}\]
Hence, the credited amount after two years is \[\text{Rs }8820\].
(ii) Now, to calculate the interest for the third year we need to subtract the amount ${{A}_{2}}$ obtained after two years form the amount ${{A}_{3}}$ obtained after three years.
\[\begin{align}
& \therefore {{A}_{3}}=8000{{\left( 1+\dfrac{0.05}{1} \right)}^{1\times 3}} \\
& \text{ }=8000{{\left( 1+\dfrac{5}{100} \right)}^{3}} \\
& \text{ }=8000{{\left( \dfrac{100+5}{100} \right)}^{3}} \\
& \text{ }=8000{{\left( \dfrac{105}{100} \right)}^{3}} \\
& \text{ }=8000\times \dfrac{105}{100}\times \dfrac{105}{100}\times \dfrac{105}{100} \\
& \therefore {{A}_{3}}=\text{Rs 9261}. \\
\end{align}\]
The interest $I$ for the third year is given by:
$\begin{align}
& I={{A}_{3}}-{{A}_{2}} \\
& \text{ }=9261-8820 \\
& \text{ }=441. \\
\end{align}$
Hence, the interest for the third year is \[\text{Rs }441\].
Note: Here, the value of $n$ must be substituted carefully. We have to read the question carefully as it is given that the rate is compounded annually, therefore, $n=1$ is substituted. We must divide the given rate by 100 and then substitute in the equation.
Recently Updated Pages
What is the maximum resistance which can be made using class 10 physics CBSE
Arrange the following elements in the order of their class 10 chemistry CBSE
In the following figure the value of resistor to be class 10 physics CBSE
The magnetic induction at point P which is at a distance class 10 physics CBSE
According to Mendeleevs Periodic Law the elements were class 10 chemistry CBSE
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Trending doubts
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE