Answer
Verified
499.8k+ views
Hint: We can use the divisibility rule for the numbers 3 and 5 to solve this question. In the case of number 5, the value of b can only be either 0 or 5. Similarly, we can apply conditions for number 3 also and get to a conclusion.
Complete step-by-step answer:
Before proceeding we should know the divisibility rule of 3 as well as 5. These are as follows:
Divisibility rule of 3: A number is divisible by 3 if and only if the sum of the digits of a number is divisible by 3.
Divisibility rule of 5: A number is divisible by 5 if and only if the last digit of a number is either 0 or 5.
Therefore, the number 2345 a 60b is divisible by 5 only if the value of $b=0\text{ or 5}$.
We have to take the value of b as 5 as we have been asked the maximum value of $a+b$.
Then the sum of the digits of the given number 2345 a 60b is $25+a$.
Therefore, the numbers greater than 25 and divisible by 3 are 20, 30, 35.
Hence, the value of a maybe 2, 5, 8 .
By comparing, the possible values of a, we get that the maximum value of $a=8$
Therefore, we have $a=8,b=5$.
Hence, the maximum value of $a+b$ is $13$.
Hence, the answer is option (b).
Note: Always remember we have been asked for the maximum value of $a+b$, therefore for the number to be divisible by 5, the last digit must be 5 not 0 as we have been asked the maximum value of $a+b$. Make sure that after getting the maximum values of $a+b$, check at least once the number is divisible by both 3 and 5.
Complete step-by-step answer:
Before proceeding we should know the divisibility rule of 3 as well as 5. These are as follows:
Divisibility rule of 3: A number is divisible by 3 if and only if the sum of the digits of a number is divisible by 3.
Divisibility rule of 5: A number is divisible by 5 if and only if the last digit of a number is either 0 or 5.
Therefore, the number 2345 a 60b is divisible by 5 only if the value of $b=0\text{ or 5}$.
We have to take the value of b as 5 as we have been asked the maximum value of $a+b$.
Then the sum of the digits of the given number 2345 a 60b is $25+a$.
Therefore, the numbers greater than 25 and divisible by 3 are 20, 30, 35.
Hence, the value of a maybe 2, 5, 8 .
By comparing, the possible values of a, we get that the maximum value of $a=8$
Therefore, we have $a=8,b=5$.
Hence, the maximum value of $a+b$ is $13$.
Hence, the answer is option (b).
Note: Always remember we have been asked for the maximum value of $a+b$, therefore for the number to be divisible by 5, the last digit must be 5 not 0 as we have been asked the maximum value of $a+b$. Make sure that after getting the maximum values of $a+b$, check at least once the number is divisible by both 3 and 5.
Recently Updated Pages
What is the maximum resistance which can be made using class 10 physics CBSE
Arrange the following elements in the order of their class 10 chemistry CBSE
In the following figure the value of resistor to be class 10 physics CBSE
The magnetic induction at point P which is at a distance class 10 physics CBSE
According to Mendeleevs Periodic Law the elements were class 10 chemistry CBSE
For a simple pendulum a graph is plotted between its class 11 physics JEE_Main
Trending doubts
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE