Answer
Verified
496.8k+ views
Hint: Use trigonometric R-method to find the maxima of a given expression. Find the formula of the R-method and compare it with the expression given. Then solve it to get the maximum value.
“Complete step-by-step answer:”
We have been given the expression, \[2\sin x+4\cos x+3\].
So, let us put, \[f\left( x \right)=2\sin x+4\cos x+3\].
The maximum value of \[a\sin x+b\cos x\]is equal to \[\sqrt{{{a}^{2}}+{{b}^{2}}}\].
This equation \[\left( a\sin x+b\cos x \right)\] is similar to the expression, \[2\sin x+4\cos x+3\].
Let us use the Trigonometric R-method to solve this expression.
The R-method is used to find the extrema (maxima and minimum) of combinations of trigonometric function.
Let us consider, \[y=A\sin x+b\sin x\].
Thus by using the R-formula, let us express y as, \[y=a\sin x+b\cos x=R\sin \left( x+\theta \right)\].
For maximum value of y, \[\sin \left( x+\theta \right)=1\].
\[\therefore \]Maximum value of, \[y=R\left( 1 \right)=R\].
We know, \[\sin \left( a+b \right)=\sin a\cos b+\cos a\sin b\].
We need to find the values of R.
\[a\sin x+b\cos x=\left( R\cos \theta \right)\sin x+\left( R\sin \theta \right)\cos x\]
By comparing we can see that, \[a=R\cos \theta \] and \[b=R\sin \theta \].
\[\begin{align}
& \therefore \dfrac{b}{a}=\dfrac{R\sin \theta }{R\cos \theta }=\tan \theta \\
& \therefore \tan \theta =\dfrac{b}{a} \\
& \Rightarrow \theta ={{\tan }^{-1}}\left( \dfrac{b}{a} \right) \\
\end{align}\]
\[a=R\cos \theta \]
\[\begin{align}
& R=\dfrac{a}{\cos \theta }=\dfrac{a}{\cos {{\tan }^{-1}}\left( \dfrac{b}{a} \right)}=\dfrac{a}{\dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}}}} \\
& R=\sqrt{{{a}^{2}}+{{b}^{2}}} \\
& \therefore a\sin x+b\cos x=\sqrt{{{a}^{2}}+{{b}^{2}}} \\
\end{align}\]
So, value of a = 2 and b = 4.
\[\begin{align}
& f\left( x \right)=2\sin x+4\cos x+3 \\
& f\left( x \right)=\sqrt{{{a}^{2}}+{{b}^{2}}}+3 \\
& f\left( x \right)=\sqrt{{{2}^{2}}+{{4}^{2}}}+3 \\
& \therefore f\left( x \right)=\sqrt{20}+3=\sqrt{2\times 2\times 5}+3 \\
& f\left( x \right)=2\sqrt{5}+3 \\
\end{align}\]
Therefore, the maximum value of f (x) becomes, \[\sqrt{20}+3=2\sqrt{5}+3\].
Hence, option (a) is the correct answer.
Note: Maxima and Minima are important concepts in trigonometry. Here we did the proof for finding maximum value. You can simply apply the expression in the given function f (x) as they are similar.
If \[f\left( x \right)=2\sin x+4\cos x\], then \[f\left( x \right)=\sqrt{{{a}^{2}}+{{b}^{2}}}=\sqrt{{{2}^{2}}+{{4}^{2}}}=\sqrt{20}\].
The maximum value of f (x) is \[\sqrt{20}\].
“Complete step-by-step answer:”
We have been given the expression, \[2\sin x+4\cos x+3\].
So, let us put, \[f\left( x \right)=2\sin x+4\cos x+3\].
The maximum value of \[a\sin x+b\cos x\]is equal to \[\sqrt{{{a}^{2}}+{{b}^{2}}}\].
This equation \[\left( a\sin x+b\cos x \right)\] is similar to the expression, \[2\sin x+4\cos x+3\].
Let us use the Trigonometric R-method to solve this expression.
The R-method is used to find the extrema (maxima and minimum) of combinations of trigonometric function.
Let us consider, \[y=A\sin x+b\sin x\].
Thus by using the R-formula, let us express y as, \[y=a\sin x+b\cos x=R\sin \left( x+\theta \right)\].
For maximum value of y, \[\sin \left( x+\theta \right)=1\].
\[\therefore \]Maximum value of, \[y=R\left( 1 \right)=R\].
We know, \[\sin \left( a+b \right)=\sin a\cos b+\cos a\sin b\].
We need to find the values of R.
\[a\sin x+b\cos x=\left( R\cos \theta \right)\sin x+\left( R\sin \theta \right)\cos x\]
By comparing we can see that, \[a=R\cos \theta \] and \[b=R\sin \theta \].
\[\begin{align}
& \therefore \dfrac{b}{a}=\dfrac{R\sin \theta }{R\cos \theta }=\tan \theta \\
& \therefore \tan \theta =\dfrac{b}{a} \\
& \Rightarrow \theta ={{\tan }^{-1}}\left( \dfrac{b}{a} \right) \\
\end{align}\]
\[a=R\cos \theta \]
\[\begin{align}
& R=\dfrac{a}{\cos \theta }=\dfrac{a}{\cos {{\tan }^{-1}}\left( \dfrac{b}{a} \right)}=\dfrac{a}{\dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}}}} \\
& R=\sqrt{{{a}^{2}}+{{b}^{2}}} \\
& \therefore a\sin x+b\cos x=\sqrt{{{a}^{2}}+{{b}^{2}}} \\
\end{align}\]
So, value of a = 2 and b = 4.
\[\begin{align}
& f\left( x \right)=2\sin x+4\cos x+3 \\
& f\left( x \right)=\sqrt{{{a}^{2}}+{{b}^{2}}}+3 \\
& f\left( x \right)=\sqrt{{{2}^{2}}+{{4}^{2}}}+3 \\
& \therefore f\left( x \right)=\sqrt{20}+3=\sqrt{2\times 2\times 5}+3 \\
& f\left( x \right)=2\sqrt{5}+3 \\
\end{align}\]
Therefore, the maximum value of f (x) becomes, \[\sqrt{20}+3=2\sqrt{5}+3\].
Hence, option (a) is the correct answer.
Note: Maxima and Minima are important concepts in trigonometry. Here we did the proof for finding maximum value. You can simply apply the expression in the given function f (x) as they are similar.
If \[f\left( x \right)=2\sin x+4\cos x\], then \[f\left( x \right)=\sqrt{{{a}^{2}}+{{b}^{2}}}=\sqrt{{{2}^{2}}+{{4}^{2}}}=\sqrt{20}\].
The maximum value of f (x) is \[\sqrt{20}\].
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE