Answer
Verified
395.4k+ views
Hint: Let us assume an open box, with a square base with each edge of length a inch, and height of the box h inch.
Let the surface area of the box (not including the top the top) be s, then we have
$s=\left( a\times a \right)+4\left( a\times h \right)$
Thus, the surface area of the open box is $s={{a}^{2}}+4ah$.
We can also write the above equation as
$4ah=s-{{a}^{2}}$
And thus, we have the height of the open box as
$h=\dfrac{s-{{a}^{2}}}{4a}...\left( i \right)$
Complete step-by-step solution:
From the figure, we can clearly say that the volume of this open box is
$V=a\times a\times h$
Using the value of height from equation (i), we get
$V={{a}^{2}}\left( \dfrac{s-{{a}^{2}}}{4a} \right)$
We can simplify this equation by cancelling terms to get,
$V=\left( \dfrac{as-{{a}^{3}}}{4} \right)...\left( ii \right)$
Here, we know that the value of s is constant, and we need to find the value of a for which the volume is maximum.
So, we know that we need to differentiate the volume with respect to a. Thus, we have
$\dfrac{dV}{da}=\dfrac{d}{da}\left( \dfrac{as-{{a}^{3}}}{4} \right)$
So, on differentiation, we get
$\dfrac{dV}{da}=\dfrac{d}{da}\left( \dfrac{as}{4} \right)-\dfrac{d}{da}\left( \dfrac{{{a}^{3}}}{4} \right)$
Hence, we now have the following equation
$\dfrac{dV}{da}=\dfrac{s}{4}-\dfrac{3{{a}^{2}}}{4}$
We now need to equate this differentiation with zero. So, we get
$\dfrac{s}{4}-\dfrac{3{{a}^{2}}}{4}=0$
Solving for a, we get
$3{{a}^{2}}=s$
Or, we can write
$a=\sqrt{\dfrac{s}{3}}$
We still need to see whether this is a maxima point or minima point.
So, ${{\left. \dfrac{{{d}^{2}}V}{d{{a}^{2}}} \right|}_{a=\sqrt{\dfrac{s}{3}}}}=\dfrac{d}{da}{{\left[ \dfrac{s}{4}-\dfrac{3{{a}^{2}}}{4} \right]}_{a=\sqrt{\dfrac{s}{3}}}}$
On solving this equation, we get
${{\left. \dfrac{{{d}^{2}}V}{d{{a}^{2}}} \right|}_{a=\sqrt{\dfrac{s}{3}}}}={{\left[ 0-\dfrac{3a}{2} \right]}_{a=\sqrt{\dfrac{s}{3}}}}$
On putting the value of a, we get
${{\left. \dfrac{{{d}^{2}}V}{d{{a}^{2}}} \right|}_{a=\sqrt{\dfrac{s}{3}}}}=\left[ -\dfrac{3\sqrt{\dfrac{s}{3}}}{2} \right]$
Or, we can write
${{\left. \dfrac{{{d}^{2}}V}{d{{a}^{2}}} \right|}_{a=\sqrt{\dfrac{s}{3}}}}=\left[ -\dfrac{\sqrt{3s}}{2} \right]$
We can clearly see that ${{\left. \dfrac{{{d}^{2}}V}{d{{a}^{2}}} \right|}_{a=\sqrt{\dfrac{s}{3}}}}<0$ .
Thus, the volume is maximum at $a=\sqrt{\dfrac{s}{3}}$ .
We know that the surface area is 27 $\text{i}{{\text{n}}^{2}}$ as is given in the question. So, we now get the value
$a=\sqrt{\dfrac{27}{3}}$
And since the value of a can never be negative, the value of a will be
$a=3$ .
Putting the values of a and s in equation (ii), we get
$V=\left( \dfrac{\left( 3\times 27 \right)-{{\left( 3 \right)}^{3}}}{4} \right)$
Thus, we get
$V=\left( \dfrac{\left( 3\times 27 \right)-27}{4} \right)$
On solving the above equation, we get
$V=\left( \dfrac{27}{2} \right)\text{i}{{\text{n}}^{3}}$
Hence, $V=13.5\text{ i}{{\text{n}}^{3}}$
Thus, the maximum volume of the open box is $13.5\text{ i}{{\text{n}}^{3}}$.
Note: We must remember that the surface area of open box with a square base is $s={{a}^{2}}+4ah$ and the surface area of a closed box with a square base is $s=2{{a}^{2}}+4ah$. Here, $a=\sqrt{\dfrac{s}{3}}$ , and since a can not be a negative value, we can say that $\sqrt{s}$ is also positive and thus, $\left[ -\dfrac{\sqrt{3s}}{2} \right]$ will be negative.
Let the surface area of the box (not including the top the top) be s, then we have
$s=\left( a\times a \right)+4\left( a\times h \right)$
Thus, the surface area of the open box is $s={{a}^{2}}+4ah$.
We can also write the above equation as
$4ah=s-{{a}^{2}}$
And thus, we have the height of the open box as
$h=\dfrac{s-{{a}^{2}}}{4a}...\left( i \right)$
Complete step-by-step solution:
From the figure, we can clearly say that the volume of this open box is
$V=a\times a\times h$
Using the value of height from equation (i), we get
$V={{a}^{2}}\left( \dfrac{s-{{a}^{2}}}{4a} \right)$
We can simplify this equation by cancelling terms to get,
$V=\left( \dfrac{as-{{a}^{3}}}{4} \right)...\left( ii \right)$
Here, we know that the value of s is constant, and we need to find the value of a for which the volume is maximum.
So, we know that we need to differentiate the volume with respect to a. Thus, we have
$\dfrac{dV}{da}=\dfrac{d}{da}\left( \dfrac{as-{{a}^{3}}}{4} \right)$
So, on differentiation, we get
$\dfrac{dV}{da}=\dfrac{d}{da}\left( \dfrac{as}{4} \right)-\dfrac{d}{da}\left( \dfrac{{{a}^{3}}}{4} \right)$
Hence, we now have the following equation
$\dfrac{dV}{da}=\dfrac{s}{4}-\dfrac{3{{a}^{2}}}{4}$
We now need to equate this differentiation with zero. So, we get
$\dfrac{s}{4}-\dfrac{3{{a}^{2}}}{4}=0$
Solving for a, we get
$3{{a}^{2}}=s$
Or, we can write
$a=\sqrt{\dfrac{s}{3}}$
We still need to see whether this is a maxima point or minima point.
So, ${{\left. \dfrac{{{d}^{2}}V}{d{{a}^{2}}} \right|}_{a=\sqrt{\dfrac{s}{3}}}}=\dfrac{d}{da}{{\left[ \dfrac{s}{4}-\dfrac{3{{a}^{2}}}{4} \right]}_{a=\sqrt{\dfrac{s}{3}}}}$
On solving this equation, we get
${{\left. \dfrac{{{d}^{2}}V}{d{{a}^{2}}} \right|}_{a=\sqrt{\dfrac{s}{3}}}}={{\left[ 0-\dfrac{3a}{2} \right]}_{a=\sqrt{\dfrac{s}{3}}}}$
On putting the value of a, we get
${{\left. \dfrac{{{d}^{2}}V}{d{{a}^{2}}} \right|}_{a=\sqrt{\dfrac{s}{3}}}}=\left[ -\dfrac{3\sqrt{\dfrac{s}{3}}}{2} \right]$
Or, we can write
${{\left. \dfrac{{{d}^{2}}V}{d{{a}^{2}}} \right|}_{a=\sqrt{\dfrac{s}{3}}}}=\left[ -\dfrac{\sqrt{3s}}{2} \right]$
We can clearly see that ${{\left. \dfrac{{{d}^{2}}V}{d{{a}^{2}}} \right|}_{a=\sqrt{\dfrac{s}{3}}}}<0$ .
Thus, the volume is maximum at $a=\sqrt{\dfrac{s}{3}}$ .
We know that the surface area is 27 $\text{i}{{\text{n}}^{2}}$ as is given in the question. So, we now get the value
$a=\sqrt{\dfrac{27}{3}}$
And since the value of a can never be negative, the value of a will be
$a=3$ .
Putting the values of a and s in equation (ii), we get
$V=\left( \dfrac{\left( 3\times 27 \right)-{{\left( 3 \right)}^{3}}}{4} \right)$
Thus, we get
$V=\left( \dfrac{\left( 3\times 27 \right)-27}{4} \right)$
On solving the above equation, we get
$V=\left( \dfrac{27}{2} \right)\text{i}{{\text{n}}^{3}}$
Hence, $V=13.5\text{ i}{{\text{n}}^{3}}$
Thus, the maximum volume of the open box is $13.5\text{ i}{{\text{n}}^{3}}$.
Note: We must remember that the surface area of open box with a square base is $s={{a}^{2}}+4ah$ and the surface area of a closed box with a square base is $s=2{{a}^{2}}+4ah$. Here, $a=\sqrt{\dfrac{s}{3}}$ , and since a can not be a negative value, we can say that $\sqrt{s}$ is also positive and thus, $\left[ -\dfrac{\sqrt{3s}}{2} \right]$ will be negative.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The only snake that builds a nest is a Krait b King class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE
Which places in India experience sunrise first and class 9 social science CBSE