Answer
Verified
402.2k+ views
Hint: There are majorly two types of quantities, scalar and vector quantities. All the quantities are divided into these two categories. Scalar quantities are those quantities, which have only magnitude eg – mass, speed, pressure, etc. Vector quantities are those which have both magnitude and directions eg – weight, velocity and thrust. The special fact about vectors is that we can resolve it into components.
Complete step by step answer:
Rectangular components means the components or parts of a vector in any two mutually perpendicular axes. This could be understood by an example as illustrated below.
Let a vector quantity ‘R’ inclined at an angle $\theta$ from the x-axis. By convention, we can split the vector ‘R’ in two rectangular components. As shown in the figure, the vector ‘R’ is split into two components;
$R_x$along x-axis and $R_y$ along y-axis. This is an extremely important and useful property of vectors. Using it, we can solve complex problems very easily. Also, we can write the values of these components as;
$R_x = Rcos\theta$
$R_y=Rsin\theta$
Additional Information: For any two general vectors, we have the magnitude of their resultant $R = \sqrt{A^2+B^2+2ABcos\theta}$. Since we have split the given vector ‘R’ into two independent vectors, we can see that doing this won't change the magnitude of the original vector.
Here A = $R_x = Rcos\theta$ and B = $R_y=Rsin\theta$
Hence, putting in the formula:
$R = \sqrt{A^2+B^2+2ABcos\theta}$
$\Rightarrow R = \sqrt{(Rcos\theta)^2+(Rsin\theta)^2+2(Rcos\theta)(Rsin\theta)cos90^{\circ}}$
As $cos\ 90^{\circ} = 0$
$R = \sqrt{R^2[(cos\theta)^2+(sin\theta)^2]+0}$
Also, $sin^2\theta+cos^2\theta = 1$
So, $R = \sqrt{R^2} = R$
Hence proved.
Note: One must not confuse that we can take the vector components only along axes that are mutually perpendicular. One can also find the component of a vector about any axis which inclination with the vector is given, provided the magnitude of the vector must not change.
Complete step by step answer:
Rectangular components means the components or parts of a vector in any two mutually perpendicular axes. This could be understood by an example as illustrated below.
Let a vector quantity ‘R’ inclined at an angle $\theta$ from the x-axis. By convention, we can split the vector ‘R’ in two rectangular components. As shown in the figure, the vector ‘R’ is split into two components;
$R_x$along x-axis and $R_y$ along y-axis. This is an extremely important and useful property of vectors. Using it, we can solve complex problems very easily. Also, we can write the values of these components as;
$R_x = Rcos\theta$
$R_y=Rsin\theta$
Additional Information: For any two general vectors, we have the magnitude of their resultant $R = \sqrt{A^2+B^2+2ABcos\theta}$. Since we have split the given vector ‘R’ into two independent vectors, we can see that doing this won't change the magnitude of the original vector.
Here A = $R_x = Rcos\theta$ and B = $R_y=Rsin\theta$
Hence, putting in the formula:
$R = \sqrt{A^2+B^2+2ABcos\theta}$
$\Rightarrow R = \sqrt{(Rcos\theta)^2+(Rsin\theta)^2+2(Rcos\theta)(Rsin\theta)cos90^{\circ}}$
As $cos\ 90^{\circ} = 0$
$R = \sqrt{R^2[(cos\theta)^2+(sin\theta)^2]+0}$
Also, $sin^2\theta+cos^2\theta = 1$
So, $R = \sqrt{R^2} = R$
Hence proved.
Note: One must not confuse that we can take the vector components only along axes that are mutually perpendicular. One can also find the component of a vector about any axis which inclination with the vector is given, provided the magnitude of the vector must not change.
Recently Updated Pages
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the longest day and shortest night in the class 11 sst CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE