Answer
Verified
468k+ views
Hint: When roads are slanting, they are said to be banked. Banking of roads is needed to increase safety while taking a turn. To obtain an expression for the maximum speed first draw all the forces acting on a vehicle taking a turn on the banked road. Resolve all the forces in the horizontal and vertical components. Equate the net force in the vertical direction to zero. Then equate the horizontal force to $F=ma=\dfrac{m{{v}^{2}}}{r}$. Perform some operations and find the expression for v.
Formula used:
$f=\mu N$
F = ma
$a=\dfrac{{{v}^{2}}}{r}$
Complete answer:
Banking of the road is raising the outer end of the road higher than the inner end. In simple words, banking on the road is making its surface slant.
When a vehicle takes a turn on a flat curved road, it must undergo a circular motion. Therefore, the vehicle must have a centripetal acceleration. This acceleration is provided by the frictional force between the vehicle and the road. However, the frictional force is limited. When the road is banked, the normal reaction by the ground also contributes to the centripetal force. Thus, the value of maximum speed for a safe turn increases.
Let us find an expression for the maximum speed for a safe turn on a curved road banked at an angle $\theta $.
Consider a vehicle taking a turn at a speed v on the banked road. Let the curve be an arc of a circle of radius r. Let us first draw all the forces acting on the vehicle as shown below.
Resolve the normal force and frictional force into their horizontal and vertical components as shown.
The vehicle does not accelerate vertically. Therefore, the net force in the vertical direction is zero.
i.e. $N\cos \theta =mg+f\sin \theta $ …. (i)
The value of frictional force is given as $f=\mu N$.
Substitute the value of f in equation (i).
$\Rightarrow N\cos \theta =mg+\mu N\sin \theta $
$\Rightarrow N=\dfrac{mg}{\cos \theta -\mu \sin \theta }$
And $f=\mu N=\dfrac{\mu mg}{\cos \theta -\mu \sin \theta }$
The net force in the horizontal direction is $F=N\sin \theta +f\cos \theta $ … (ii).
And this force F is the centripetal force acting on the vehicle.
From Newton’s second law, F = ma. Here is the centripetal acceleration.
Centripetal acceleration of a body is given as $a=\dfrac{{{v}^{2}}}{r}$.
Therefore, $F=ma=\dfrac{m{{v}^{2}}}{r}$ …. (iii).
On equating (ii) and (iii), we get
$\dfrac{m{{v}^{2}}}{r}=N\sin \theta +f\cos \theta $
Substitute the values of f and N.
$\Rightarrow \dfrac{m{{v}^{2}}}{r}=\left( \dfrac{mg}{\cos \theta -\mu \sin \theta } \right)\sin \theta +\left( \dfrac{\mu mg}{\cos \theta -\mu \sin \theta } \right)\cos \theta $
$\Rightarrow \dfrac{m{{v}^{2}}}{r}=\left( \dfrac{mg\sin \theta +\mu mg\cos \theta }{\cos \theta -\mu \sin \theta } \right)$
$\Rightarrow {{v}^{2}}=rg\left( \dfrac{\sin \theta +\mu \cos \theta }{\cos \theta -\mu \sin \theta } \right)$
$\Rightarrow {{v}^{2}}=rg\left( \dfrac{\tan \theta +\mu }{1-\mu \tan \theta } \right)$
$\Rightarrow v=\sqrt{rg\left( \dfrac{\tan \theta +\mu }{1-\mu \tan \theta } \right)}$
Hence, we found the expression for the maximum speed for a safe turn.
Note:
The maximum possible speed while taking a turn depends on the way the road is banked. That is the maximum safe speed depends on the angle $\theta $.
Consider the final expression of v, i.e. $v=\sqrt{rg\left( \dfrac{\tan \theta +\mu }{1-\mu \tan \theta } \right)}$.
The maximum value of $\left( \dfrac{\tan \theta +\mu }{1-\mu \tan \theta } \right)$ will give us the maximum possible speed. And that will happen when $\tan \theta =\dfrac{1}{\mu }$.
Formula used:
$f=\mu N$
F = ma
$a=\dfrac{{{v}^{2}}}{r}$
Complete answer:
Banking of the road is raising the outer end of the road higher than the inner end. In simple words, banking on the road is making its surface slant.
When a vehicle takes a turn on a flat curved road, it must undergo a circular motion. Therefore, the vehicle must have a centripetal acceleration. This acceleration is provided by the frictional force between the vehicle and the road. However, the frictional force is limited. When the road is banked, the normal reaction by the ground also contributes to the centripetal force. Thus, the value of maximum speed for a safe turn increases.
Let us find an expression for the maximum speed for a safe turn on a curved road banked at an angle $\theta $.
Consider a vehicle taking a turn at a speed v on the banked road. Let the curve be an arc of a circle of radius r. Let us first draw all the forces acting on the vehicle as shown below.
Resolve the normal force and frictional force into their horizontal and vertical components as shown.
The vehicle does not accelerate vertically. Therefore, the net force in the vertical direction is zero.
i.e. $N\cos \theta =mg+f\sin \theta $ …. (i)
The value of frictional force is given as $f=\mu N$.
Substitute the value of f in equation (i).
$\Rightarrow N\cos \theta =mg+\mu N\sin \theta $
$\Rightarrow N=\dfrac{mg}{\cos \theta -\mu \sin \theta }$
And $f=\mu N=\dfrac{\mu mg}{\cos \theta -\mu \sin \theta }$
The net force in the horizontal direction is $F=N\sin \theta +f\cos \theta $ … (ii).
And this force F is the centripetal force acting on the vehicle.
From Newton’s second law, F = ma. Here is the centripetal acceleration.
Centripetal acceleration of a body is given as $a=\dfrac{{{v}^{2}}}{r}$.
Therefore, $F=ma=\dfrac{m{{v}^{2}}}{r}$ …. (iii).
On equating (ii) and (iii), we get
$\dfrac{m{{v}^{2}}}{r}=N\sin \theta +f\cos \theta $
Substitute the values of f and N.
$\Rightarrow \dfrac{m{{v}^{2}}}{r}=\left( \dfrac{mg}{\cos \theta -\mu \sin \theta } \right)\sin \theta +\left( \dfrac{\mu mg}{\cos \theta -\mu \sin \theta } \right)\cos \theta $
$\Rightarrow \dfrac{m{{v}^{2}}}{r}=\left( \dfrac{mg\sin \theta +\mu mg\cos \theta }{\cos \theta -\mu \sin \theta } \right)$
$\Rightarrow {{v}^{2}}=rg\left( \dfrac{\sin \theta +\mu \cos \theta }{\cos \theta -\mu \sin \theta } \right)$
$\Rightarrow {{v}^{2}}=rg\left( \dfrac{\tan \theta +\mu }{1-\mu \tan \theta } \right)$
$\Rightarrow v=\sqrt{rg\left( \dfrac{\tan \theta +\mu }{1-\mu \tan \theta } \right)}$
Hence, we found the expression for the maximum speed for a safe turn.
Note:
The maximum possible speed while taking a turn depends on the way the road is banked. That is the maximum safe speed depends on the angle $\theta $.
Consider the final expression of v, i.e. $v=\sqrt{rg\left( \dfrac{\tan \theta +\mu }{1-\mu \tan \theta } \right)}$.
The maximum value of $\left( \dfrac{\tan \theta +\mu }{1-\mu \tan \theta } \right)$ will give us the maximum possible speed. And that will happen when $\tan \theta =\dfrac{1}{\mu }$.
Recently Updated Pages
There are two sample of HCI having molarity 1M and class 11 chemistry JEE_Main
For the reaction I + ClO3 + H2SO4 to Cl + HSO4 + I2 class 11 chemistry JEE_Main
What happens to the gravitational force between two class 11 physics NEET
In the reaction 2NH4 + + 6NO3 aq + 4H + aq to 6NO2g class 11 chemistry JEE_Main
A weightless rod is acted upon by upward parallel forces class 11 phy sec 1 JEE_Main
From a uniform circular disc of radius R and mass 9 class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE
On which part of the tongue most of the taste gets class 11 biology CBSE