Answer
Verified
441.6k+ views
Hint:Here the gravitational pull experienced by you from the black hole would be the same as the gravitational pull experienced by you from the earth. So, in manner of fact we just have to find the distance and to do that apply the general formula for gravitational force.
Complete step by step solution:
The force of gravity between you and the black hole:
${F_{ge}} = G\dfrac{{{M_b}m}}{{{r_b}^2}}$ ;
Now, according to the Newton’s second law F = ma;
${F_{ge}} = mg$;
Equate the above relation with ${F_{ge}} = G\dfrac{{{M_b}m}}{{{r_b}^2}}$:
$mg = G\dfrac{{{M_b}m}}{{{r_b}^2}}$;
Write the above equation in terms of ${r_e}$:
$ \Rightarrow {r_b}^2 = G\dfrac{{{M_b}}}{g}$;
$ \Rightarrow {r_b} = \sqrt {G\dfrac{{{M_b}}}{g}} $;
Put in the given values and solve:
$ \Rightarrow {r_b} = \sqrt {\dfrac{{\left( {6.67 \times {{10}^{ - 11}}} \right)\left( {1 \times {{10}^{11}}} \right)}}{{9.8}}} $
$ \Rightarrow {r_b} = \sqrt {\dfrac{{6.67}}{{9.8}}} $;
Do the necessary calculation:
$ \Rightarrow {r_b} = \sqrt {0.68} $
The distance that is required by the black hole to apply the same pull as earth’s gravity is:
$ \Rightarrow {r_b} \simeq 0.8m$;
The distance from your head would its gravitational pull on you match that of Earth’s would be approximately 0.8m.
Note:Here in this question there is no need for first finding out the gravitational force on the person due to Earth and then equating it with the gravitational force due to black hole. Just apply the formula for gravitational force and write it in terms of the distance and solve for the unknown.
Complete step by step solution:
The force of gravity between you and the black hole:
${F_{ge}} = G\dfrac{{{M_b}m}}{{{r_b}^2}}$ ;
Now, according to the Newton’s second law F = ma;
${F_{ge}} = mg$;
Equate the above relation with ${F_{ge}} = G\dfrac{{{M_b}m}}{{{r_b}^2}}$:
$mg = G\dfrac{{{M_b}m}}{{{r_b}^2}}$;
Write the above equation in terms of ${r_e}$:
$ \Rightarrow {r_b}^2 = G\dfrac{{{M_b}}}{g}$;
$ \Rightarrow {r_b} = \sqrt {G\dfrac{{{M_b}}}{g}} $;
Put in the given values and solve:
$ \Rightarrow {r_b} = \sqrt {\dfrac{{\left( {6.67 \times {{10}^{ - 11}}} \right)\left( {1 \times {{10}^{11}}} \right)}}{{9.8}}} $
$ \Rightarrow {r_b} = \sqrt {\dfrac{{6.67}}{{9.8}}} $;
Do the necessary calculation:
$ \Rightarrow {r_b} = \sqrt {0.68} $
The distance that is required by the black hole to apply the same pull as earth’s gravity is:
$ \Rightarrow {r_b} \simeq 0.8m$;
The distance from your head would its gravitational pull on you match that of Earth’s would be approximately 0.8m.
Note:Here in this question there is no need for first finding out the gravitational force on the person due to Earth and then equating it with the gravitational force due to black hole. Just apply the formula for gravitational force and write it in terms of the distance and solve for the unknown.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE