Answer
Verified
441.6k+ views
Hint: In this question we have the values of mean and the median given. We have to find the mode. So for this there is a relation between these three and it is given by $Mode = {\text{3median - 2mean}}$ . And is also known to be an empirical formula. So on substituting the values and equating we will get the value for the mode.
Formula used:
The relation between the mean, median and mode is given by
$Mode = {\text{3 median - 2 mean}}$
Complete step-by-step answer:
First of all we will see the values given to us. Here in this question we have the value for the mean and median. And it is given by $20$ and $15$ respectively.
Now by using the relation, we have the relation as $Mode = {\text{3 median - 2 mean}}$
So on substituting the known values in the next line, we will get
$ \Rightarrow Mode = 3 \times 15 - 2 \times 20$
Now, on solving the multiplication we will get the solution as
$ \Rightarrow Mode = 45 - 40$
And therefore on solving the above differences, we will get the value for mode, and it will be
$ \Rightarrow Mode = 5$
Therefore, the value of the mode will be equal to $5$
Hence, the option $\left( c \right)$ is correct.
Note: The difference between the mean, median and mode in one line for each of the following will be given by as the mean is said to be as the average of a set of data. And the mode will be the most common number in the set of data. Whereas the median will be the middle of the numbers in the set. So in this way we can understand the basic difference between these three terms.
Formula used:
The relation between the mean, median and mode is given by
$Mode = {\text{3 median - 2 mean}}$
Complete step-by-step answer:
First of all we will see the values given to us. Here in this question we have the value for the mean and median. And it is given by $20$ and $15$ respectively.
Now by using the relation, we have the relation as $Mode = {\text{3 median - 2 mean}}$
So on substituting the known values in the next line, we will get
$ \Rightarrow Mode = 3 \times 15 - 2 \times 20$
Now, on solving the multiplication we will get the solution as
$ \Rightarrow Mode = 45 - 40$
And therefore on solving the above differences, we will get the value for mode, and it will be
$ \Rightarrow Mode = 5$
Therefore, the value of the mode will be equal to $5$
Hence, the option $\left( c \right)$ is correct.
Note: The difference between the mean, median and mode in one line for each of the following will be given by as the mean is said to be as the average of a set of data. And the mode will be the most common number in the set of data. Whereas the median will be the middle of the numbers in the set. So in this way we can understand the basic difference between these three terms.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers