Answer
Verified
398.1k+ views
Hint: To understand and solve this question, we will have to first understand the molar specific heat capacity at constant pressure and at constant volume. We will also use the relationship between them to finally get our solution.
Complete answer:
First let us understand what molar specific heat capacity is at constant pressure and at constant volume.
Molar specific heat capacity at constant pressure is defined as the amount of heat energy required to raise the temperature of one mole of a substance through $ 1K $ or $ 1^\circ C $ at constant pressure. It is denoted by $ {C_P} $ .
By definition, $ {C_P} = \dfrac{{d{q_P}}}{{dT}} $
Since, $ {q_P} = H $
Therefore, $ {C_P} = \dfrac{{dH}}{{dT}} $
Molar specific heat capacity at constant volume is defined as the amount of heat energy required to raise the temperature of one mole of a substance through $ 1K $ or $ 1^\circ C $ at constant volume. It is denoted by $ {C_V} $ .
By definition, $ {C_V} = \dfrac{{d{q_V}}}{{dT}} $
Since, $ {q_V} = U $
Therefore, $ {C_V} = \dfrac{{dU}}{{dT}} $
Now let’s see the relationship between molar specific heat capacity at constant pressure and at constant volume.
From the equation of enthalpy, $ H = U + PV $
But, in case of one mole of ideal gas, $ PV = RT $
Therefore, $ H = U + RT $
On differentiating the both sides with respect to temperature, we get,
$ \dfrac{{dH}}{{dT}} = \dfrac{{dU}}{{dT}} + \dfrac{{d(RT)}}{{dT}} $
But we know that, $ {C_P} = \dfrac{{dH}}{{dT}} $ and $ {C_V} = \dfrac{{dU}}{{dT}} $
Therefore,
$ {C_P} = {C_V} + R.\dfrac{{dT}}{{dT}} $
$ {C_P} = {C_V} + R $
Or we can say, $ {C_P} - {C_V} = R $
Thus, the difference between the molar heat capacities at constant volume and pressure always equals $ R $ , the universal gas constant.
Hence, option A is correct.
Note:
In exams, you need not to memorize the whole thing. You can just remember the relationship between molar specific heat capacity at constant volume and at constant pressure for one mole, that is, $ {C_P} = {C_V} + R $ . You can also derive the relation between the two by simply using the enthalpy equation.
Complete answer:
First let us understand what molar specific heat capacity is at constant pressure and at constant volume.
Molar specific heat capacity at constant pressure is defined as the amount of heat energy required to raise the temperature of one mole of a substance through $ 1K $ or $ 1^\circ C $ at constant pressure. It is denoted by $ {C_P} $ .
By definition, $ {C_P} = \dfrac{{d{q_P}}}{{dT}} $
Since, $ {q_P} = H $
Therefore, $ {C_P} = \dfrac{{dH}}{{dT}} $
Molar specific heat capacity at constant volume is defined as the amount of heat energy required to raise the temperature of one mole of a substance through $ 1K $ or $ 1^\circ C $ at constant volume. It is denoted by $ {C_V} $ .
By definition, $ {C_V} = \dfrac{{d{q_V}}}{{dT}} $
Since, $ {q_V} = U $
Therefore, $ {C_V} = \dfrac{{dU}}{{dT}} $
Now let’s see the relationship between molar specific heat capacity at constant pressure and at constant volume.
From the equation of enthalpy, $ H = U + PV $
But, in case of one mole of ideal gas, $ PV = RT $
Therefore, $ H = U + RT $
On differentiating the both sides with respect to temperature, we get,
$ \dfrac{{dH}}{{dT}} = \dfrac{{dU}}{{dT}} + \dfrac{{d(RT)}}{{dT}} $
But we know that, $ {C_P} = \dfrac{{dH}}{{dT}} $ and $ {C_V} = \dfrac{{dU}}{{dT}} $
Therefore,
$ {C_P} = {C_V} + R.\dfrac{{dT}}{{dT}} $
$ {C_P} = {C_V} + R $
Or we can say, $ {C_P} - {C_V} = R $
Thus, the difference between the molar heat capacities at constant volume and pressure always equals $ R $ , the universal gas constant.
Hence, option A is correct.
Note:
In exams, you need not to memorize the whole thing. You can just remember the relationship between molar specific heat capacity at constant volume and at constant pressure for one mole, that is, $ {C_P} = {C_V} + R $ . You can also derive the relation between the two by simply using the enthalpy equation.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Explain the Basics of Computer and Number System?
Class 11 Question and Answer - Your Ultimate Solutions Guide
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Who was the Governor general of India at the time of class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE