Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

What is the molecular orbital diagram for C2 ?

Answer
VerifiedVerified
438.6k+ views
like imagedislike image
Hint :We know that C2 is a component of vapours of carbon. According to a research paper, carbon vapours contain around 28 but this depends on the temperature and pressure. The electrons are distributed among the atomic orbitals according to Aufbau’s principle. This produces unique quantum states, with corresponding energy levels.

Complete Step By Step Answer:
The quantum state which has the lowest energy level is known as the ground state. The ground state is a singlet state. There are several excited singlet and triplet states that are relatively similar energy to the ground state. Molecular orbital theory shows that it has two sets of paired electrons in a degenerate bonding set of orbitals. This gives a bond order of two, which means that there should exist a double bond between the two carbons in a C2 .
 As you know, a neutral carbon atom has a total of six electrons. This, of course, implies that a C2  molecule has a total of 2×6e=12e
Thus follows that the C2  species will have; 12e+1e=13e
It will be added to lowest energy unoccupied molecular orbital/lowest unoccupied molecular orbital, LUMO, that follows that the highest energy occupied molecular orbital/highest occupied molecular orbital, HOMO. The diagram below shows the two 2pπ orbitals, let's say 2pπx and 2pπy , are the highest energy occupied molecular orbitals. The lowest energy unoccupied molecular orbital is 2pσ , so that is where extra electrons will be added.
seo images

Also, an unpaired electron will make the C2 ion paramagnetic, i.e. it is attracted by an externally applied magnetic field. On the other hand, the neutral C2 molecule has no unpaired electrons, so it is diamagnetic, i.e. it is not attracted by an externally applied magnetic field.
seo images


Note :
The various quantum states of dicarbon form significant proportions of dicarbon under ambient conditions. The problem provides you with a MO diagram for the C2  molecule, so all we really have to do here is add an electron to that diagram. We need to add an electron and not remove one because of overall negative charge that exists on molecule
Latest Vedantu courses for you
Grade 11 Science PCM | CBSE | SCHOOL | English
CBSE (2025-26)
calendar iconAcademic year 2025-26
language iconENGLISH
book iconUnlimited access till final school exam
tick
School Full course for CBSE students
PhysicsPhysics
ChemistryChemistry
MathsMaths
₹41,848 per year
Select and buy