Answer
Verified
496.8k+ views
Hint: Assign variables to mother’s age and son’s age. Write the equations relating to their age in the present and after 8 years and solve them to find the son’s age.
Complete step by step answer:
Let the present age of the mother be x years and the present age of the son be y years.
It is given that a mother is 25 years older than her son. Then, we have:
\[x = y + 25............(1)\]
After eight years, the ratio of son’s age to the mother’s age is 4:9. We know that the age of the mother after 8 years is (x + 8) and the age of the son after 8 years is (y + 8). Hence, we have:
\[\dfrac{{y + 8}}{{x + 8}} = \dfrac{4}{9}............(2)\]
We now have two equations with two unknowns, hence, we substitute equation (1) in equation (2), to obtain the age of the son.
\[\dfrac{{y + 8}}{{(y + 25) + 8}} = \dfrac{4}{9}\]
Simplifying the term in the denominator, we get:
\[\dfrac{{y + 8}}{{y + 33}} = \dfrac{4}{9}\]
Cross-multiplying, we get:
\[9(y + 8) = 4(y + 33)\]
Multiplying inside the brackets, we obtain:
\[9y + 72 = 4y + 132\]
Taking all terms containing y to the left-hand side and all constant terms to the right hand side, we have:
\[9y - 4y = 132 - 72\]
Simplifying, we get:
\[5y = 60\]
Solving for y, we get:
\[y = \dfrac{{60}}{5}\]
\[y = 12\]
Hence, the present age of the son is 12 years.
Note: After you obtain the age of the son, find the age of the mother and substitute in the equations to check if the answer is correct. The key in such questions is to translate the statements of the problem into mathematical statements.
Complete step by step answer:
Let the present age of the mother be x years and the present age of the son be y years.
It is given that a mother is 25 years older than her son. Then, we have:
\[x = y + 25............(1)\]
After eight years, the ratio of son’s age to the mother’s age is 4:9. We know that the age of the mother after 8 years is (x + 8) and the age of the son after 8 years is (y + 8). Hence, we have:
\[\dfrac{{y + 8}}{{x + 8}} = \dfrac{4}{9}............(2)\]
We now have two equations with two unknowns, hence, we substitute equation (1) in equation (2), to obtain the age of the son.
\[\dfrac{{y + 8}}{{(y + 25) + 8}} = \dfrac{4}{9}\]
Simplifying the term in the denominator, we get:
\[\dfrac{{y + 8}}{{y + 33}} = \dfrac{4}{9}\]
Cross-multiplying, we get:
\[9(y + 8) = 4(y + 33)\]
Multiplying inside the brackets, we obtain:
\[9y + 72 = 4y + 132\]
Taking all terms containing y to the left-hand side and all constant terms to the right hand side, we have:
\[9y - 4y = 132 - 72\]
Simplifying, we get:
\[5y = 60\]
Solving for y, we get:
\[y = \dfrac{{60}}{5}\]
\[y = 12\]
Hence, the present age of the son is 12 years.
Note: After you obtain the age of the son, find the age of the mother and substitute in the equations to check if the answer is correct. The key in such questions is to translate the statements of the problem into mathematical statements.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Discuss the main reasons for poverty in India
Write a letter to the principal requesting him to grant class 10 english CBSE