Answer
Verified
467.1k+ views
Hint: Here in this question we will try to multiply the given equation step by step then by simplifying the numerator and denominator we will get the desired result , which is to be expressed in the lowest term possible.
Complete step by step answer:
Let us start by multiplying the first two terms, we get
$
\left[ {\dfrac{{2x - 1}}{{{x^2} + 2x + 4}} \times \dfrac{{{x^4} - 8x}}{{2{x^2} + 5x - 3}}} \right] \times \left\{ {\dfrac{{x + 3}}{{{x^2} - 2x}}} \right\} \\
= \left[ {\dfrac{{(2x - 1) \times \left( {{x^4} - 8x} \right)}}{{({x^2} + 2x + 4) \times (2{x^2} + 5x - 3)}}} \right] \times \left\{ {\dfrac{{x + 3}}{{{x^2} - 2x}}} \right\} \\
$
In order to make our task easier , we’ll multiply second term to each of the first term elements. We get
\[ = \left[ {\dfrac{{2x \times \left( {{x^4} - 8x} \right) - 1 \times \left( {{x^4} - 8x} \right)}}{{{x^2} \times (2{x^2} + 5x - 3) + 2x \times (2{x^2} + 5x - 3) + 4 \times (2{x^2} + 5x - 3)}}} \right] \times \left\{ {\dfrac{{x + 3}}{{{x^2} - 2x}}} \right\}\]
Now , we’ll multiply and simplify the numerator and denominator both. We get
$
= \left[ {\dfrac{{2{x^5} - 16{x^2} - {x^4} + 8x}}{{2{x^4} + 5{x^3} - 3{x^2} + 4{x^3} + 10{x^2} - 6x + 8{x^2} + 20x - 12}}} \right] \times \left\{ {\dfrac{{x + 3}}{{{x^2} - 2x}}} \right\} \\
= \left[ {\dfrac{{2{x^5} - 16{x^2} - {x^4} + 8x}}{{2{x^4} + 9{x^3} + 15{x^2} + 14x - 12}}} \right] \times \left\{ {\dfrac{{x + 3}}{{{x^2} - 2x}}} \right\} \\
$
Now let us multiply the leftover terms using the same procedure as previous i.e. multiplying the second term to each element of the first term and simplifying both numerator and denominator.
On solving , we get
\[ = \left[ {\dfrac{{2{x^5}(x + 3) - 16{x^2}(x + 3) - {x^4}(x + 3) + 8x(x + 3)}}{{2{x^4}({x^2} - 2x) + 9{x^3}({x^2} - 2x) + 15{x^2}({x^2} - 2x) + 14x({x^2} - 2x) - 12({x^2} - 2x)}}} \right]\]
Opening the brackets and simplifying numerator and denominator , we get
$
= \left[ {\dfrac{{2{x^6} + 6{x^5} - 16{x^3} - 48{x^2} - {x^5} - 3{x^4} + 8{x^2} + 24x}}{{2{x^6} - 4{x^5} + 9{x^5} - 18{x^4} + 15{x^4} - 30{x^3} + 14{x^3} - 28{x^2} - 12{x^2} + 24x}}} \right] \\
= \left[ {\dfrac{{2{x^6} + 5{x^5} - 16{x^3} - 40{x^2} - 3{x^4} + 24x}}{{2{x^6} + 5{x^5} - 3{x^4} - 16{x^3} - 40{x^2} + 24x}}} \right] \\
$
As both the numerator and denominator are the same they’ll get cancelled out.
= 1
So the lowest possible term in which the given product could be written is 1.
Note: In this question the simplest mistake we can make is multiplication and calculations. So always remember to check your calculations. By these basics you should be able to solve the question. Try to cross verify your multiplication at each stage as they involve a lot of exponents.
Complete step by step answer:
Let us start by multiplying the first two terms, we get
$
\left[ {\dfrac{{2x - 1}}{{{x^2} + 2x + 4}} \times \dfrac{{{x^4} - 8x}}{{2{x^2} + 5x - 3}}} \right] \times \left\{ {\dfrac{{x + 3}}{{{x^2} - 2x}}} \right\} \\
= \left[ {\dfrac{{(2x - 1) \times \left( {{x^4} - 8x} \right)}}{{({x^2} + 2x + 4) \times (2{x^2} + 5x - 3)}}} \right] \times \left\{ {\dfrac{{x + 3}}{{{x^2} - 2x}}} \right\} \\
$
In order to make our task easier , we’ll multiply second term to each of the first term elements. We get
\[ = \left[ {\dfrac{{2x \times \left( {{x^4} - 8x} \right) - 1 \times \left( {{x^4} - 8x} \right)}}{{{x^2} \times (2{x^2} + 5x - 3) + 2x \times (2{x^2} + 5x - 3) + 4 \times (2{x^2} + 5x - 3)}}} \right] \times \left\{ {\dfrac{{x + 3}}{{{x^2} - 2x}}} \right\}\]
Now , we’ll multiply and simplify the numerator and denominator both. We get
$
= \left[ {\dfrac{{2{x^5} - 16{x^2} - {x^4} + 8x}}{{2{x^4} + 5{x^3} - 3{x^2} + 4{x^3} + 10{x^2} - 6x + 8{x^2} + 20x - 12}}} \right] \times \left\{ {\dfrac{{x + 3}}{{{x^2} - 2x}}} \right\} \\
= \left[ {\dfrac{{2{x^5} - 16{x^2} - {x^4} + 8x}}{{2{x^4} + 9{x^3} + 15{x^2} + 14x - 12}}} \right] \times \left\{ {\dfrac{{x + 3}}{{{x^2} - 2x}}} \right\} \\
$
Now let us multiply the leftover terms using the same procedure as previous i.e. multiplying the second term to each element of the first term and simplifying both numerator and denominator.
On solving , we get
\[ = \left[ {\dfrac{{2{x^5}(x + 3) - 16{x^2}(x + 3) - {x^4}(x + 3) + 8x(x + 3)}}{{2{x^4}({x^2} - 2x) + 9{x^3}({x^2} - 2x) + 15{x^2}({x^2} - 2x) + 14x({x^2} - 2x) - 12({x^2} - 2x)}}} \right]\]
Opening the brackets and simplifying numerator and denominator , we get
$
= \left[ {\dfrac{{2{x^6} + 6{x^5} - 16{x^3} - 48{x^2} - {x^5} - 3{x^4} + 8{x^2} + 24x}}{{2{x^6} - 4{x^5} + 9{x^5} - 18{x^4} + 15{x^4} - 30{x^3} + 14{x^3} - 28{x^2} - 12{x^2} + 24x}}} \right] \\
= \left[ {\dfrac{{2{x^6} + 5{x^5} - 16{x^3} - 40{x^2} - 3{x^4} + 24x}}{{2{x^6} + 5{x^5} - 3{x^4} - 16{x^3} - 40{x^2} + 24x}}} \right] \\
$
As both the numerator and denominator are the same they’ll get cancelled out.
= 1
So the lowest possible term in which the given product could be written is 1.
Note: In this question the simplest mistake we can make is multiplication and calculations. So always remember to check your calculations. By these basics you should be able to solve the question. Try to cross verify your multiplication at each stage as they involve a lot of exponents.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE