Answer
Verified
490.2k+ views
Hint: We have 3 kinds of digits from $1$ and $1000$ such as one digit numbers, two digit numbers and three digit numbers.
Complete step by step answer:
Complete step by step answer:
Now here we have to find natural numbers where none of the digits should be repeated.
Here from $1$ to $1000$ we have $3$ kinds of digits
One digit numbers, two digit numbers and three digit numbers.
One digit numbers:
We know that there are $9$ possible to get single digit numbers from $1 - 9$
$ \Rightarrow 9 ways$
Two digit numbers:
Here the first digit can be from $1 - 9$ and the second digit can be from$0 - 9$.
We also know that “zero” cannot be the first digit so we have excluded it
Total possible = $9 \times 9 = 81$ ways
Three digit numbers:
Here the first digit can be from $1 - 9$ and the second digit can be from $0 - 9$ but not the first digit $10 - 1 = 9$.
And the third digit can be from $0 - 9$ but not the same as the first and second digit.
Total possible=$9 \times 9 \times 8 = 648$
Here we have found all the possible under without repetition condition
Therefore total number of natural numbers from $1$ to $1000$ without repetition= $648 + 81 + 9 = 738$ ways.
Note: Make a note that digits should not be repeated and kindly focus that zero can’t be the first digit for any kind terms.
Here from $1$ to $1000$ we have $3$ kinds of digits
One digit numbers, two digit numbers and three digit numbers.
One digit numbers:
We know that there are $9$ possible to get single digit numbers from $1 - 9$
$ \Rightarrow 9 ways$
Two digit numbers:
Here the first digit can be from $1 - 9$ and the second digit can be from$0 - 9$.
We also know that “zero” cannot be the first digit so we have excluded it
Total possible = $9 \times 9 = 81$ ways
Three digit numbers:
Here the first digit can be from $1 - 9$ and the second digit can be from $0 - 9$ but not the first digit $10 - 1 = 9$.
And the third digit can be from $0 - 9$ but not the same as the first and second digit.
Total possible=$9 \times 9 \times 8 = 648$
Here we have found all the possible under without repetition condition
Therefore total number of natural numbers from $1$ to $1000$ without repetition= $648 + 81 + 9 = 738$ ways.
Note: Make a note that digits should not be repeated and kindly focus that zero can’t be the first digit for any kind terms.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE