Answer
Verified
460.8k+ views
Hint: We have a raindrop that is freely falling in air. We can use Stokes’ Law which determines the terminal velocity of small spherical objects which are freely falling in a fluid medium. Substituting the given values in the Stokes’ Law equation, we will have the velocity of the raindrop.
Formula used:
${v_t} = \dfrac{2}{9}\dfrac{{{r^2}\left( {\rho - \rho '} \right)g}}{\eta }$
Complete answer:
In the question, they’ve given us a raindrop whose radius is $0.3mm$ and viscosity of the $1.8 \times {10^{ - 5}}Ns{m^{ - 3}}$.
From Stokes’ Law we have
${V_t} = \dfrac{2}{9}\dfrac{{{r^2}\left( {\rho - \rho '} \right)g}}{\eta }$
Where,
$V_t$ is the terminal velocity of the raindrop
r is the radius of the raindrop
ρ is the density of the raindrop
ρ’ is the density of the medium in which the raindrop is traveling
g is the acceleration due to gravity
η is the viscosity of the medium
We’ll be ignoring the ρ’ as the raindrop is traveling in the air and they’ve given that the density of air is neglected. Substituting the values given in the question, we get
$\eqalign{
& {v_t} = \dfrac{2}{9}\dfrac{{{r^2}\rho g}}{\eta } \cr
& \Rightarrow {v_t} = \dfrac{2}{9} \times \dfrac{{{{\left( {0.3 \times {{10}^{ - 3}}} \right)}^2} \times 1000 \times 9.8}}{{1.8 \times {{10}^{ - 5}}}} \cr
& \Rightarrow {v_t} = \dfrac{2}{9} \times 49 = 10.89m{s^{ - 1}} \cr
& \therefore {v_t} = 10.89m{s^{ - 1}} \sim 10.9m{s^{ - 1}} \cr} $
Therefore, the terminal velocity of the raindrop is 10.9m/s.
Thus, the correct option is A.
Note:
The terminal velocity is the velocity attained by the particle that is freely falling in a fluid medium. Here, the fluid medium is the air, which is a gas. The density of the air is very small compared to that of water. That is why it is mostly ignored. One might notice that Stokes’ Law is mostly applicable only to the small spherical objects.
Formula used:
${v_t} = \dfrac{2}{9}\dfrac{{{r^2}\left( {\rho - \rho '} \right)g}}{\eta }$
Complete answer:
In the question, they’ve given us a raindrop whose radius is $0.3mm$ and viscosity of the $1.8 \times {10^{ - 5}}Ns{m^{ - 3}}$.
From Stokes’ Law we have
${V_t} = \dfrac{2}{9}\dfrac{{{r^2}\left( {\rho - \rho '} \right)g}}{\eta }$
Where,
$V_t$ is the terminal velocity of the raindrop
r is the radius of the raindrop
ρ is the density of the raindrop
ρ’ is the density of the medium in which the raindrop is traveling
g is the acceleration due to gravity
η is the viscosity of the medium
We’ll be ignoring the ρ’ as the raindrop is traveling in the air and they’ve given that the density of air is neglected. Substituting the values given in the question, we get
$\eqalign{
& {v_t} = \dfrac{2}{9}\dfrac{{{r^2}\rho g}}{\eta } \cr
& \Rightarrow {v_t} = \dfrac{2}{9} \times \dfrac{{{{\left( {0.3 \times {{10}^{ - 3}}} \right)}^2} \times 1000 \times 9.8}}{{1.8 \times {{10}^{ - 5}}}} \cr
& \Rightarrow {v_t} = \dfrac{2}{9} \times 49 = 10.89m{s^{ - 1}} \cr
& \therefore {v_t} = 10.89m{s^{ - 1}} \sim 10.9m{s^{ - 1}} \cr} $
Therefore, the terminal velocity of the raindrop is 10.9m/s.
Thus, the correct option is A.
Note:
The terminal velocity is the velocity attained by the particle that is freely falling in a fluid medium. Here, the fluid medium is the air, which is a gas. The density of the air is very small compared to that of water. That is why it is mostly ignored. One might notice that Stokes’ Law is mostly applicable only to the small spherical objects.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE