Answer
Verified
449.4k+ views
Hint: A palindrome is a number that reads the same forward and backward, such as $242$. The five digit palindrome is of the form of $ABCBA$; where $A$ is the same digit on $1^{st}$ and $5^{th}$ place, $B$ is the same digit on $2^{nd}$ and $4^{th}$ place, $C$ is the digit on $3^{rd}$ place.
Complete step-by-step answer:
Let the five digit palindrome is of the form of $ABCBA$; where $A$ is the same digit on $1^{st}$ and $5^{th}$ place, $B$ is the same digit on $2^{nd}$ and $4^{th}$ place, $C$ is the digit on $3^{rd}$ place.
The palindrome must be even, if the number in position $A$ can only be $2,4,6$ or $8$. This number cannot be $0$ because if the first digit is $0$, it would make the $5$ digit number a $4$ digit number. So, the place $A$ can be filled by $4$ ways.
The number in position $B$could be $0,1,2,3,4,5,6,7,8,9$. So the place $B$ can be filled by $10$ ways.
Also, the number in position $C$ could be the same, i.e., $0,1,2,3,4,5,6,7,8,9$. So the place $C$ can be filled by $10$ ways.
So, the desired number of $5$ digits even palindromes$ = 4 \times 10 \times 10$$ = 400$
Option A is the correct answer.
Note: An another method to solve this problem is described as follows:
The first and last digits can only be even integers and are the same in $4$ ways, i.e., $2,4,6$ or $8$.
The second and fourth digits are the same but ranges from $0 - 9$ in $10$ ways.
The third digit could be any integer from $0 - 9$ in $10$ ways.
So the desired number of $5$ digits even palindromes $ = 4 \times 10 \times 10 = 400$
Complete step-by-step answer:
Let the five digit palindrome is of the form of $ABCBA$; where $A$ is the same digit on $1^{st}$ and $5^{th}$ place, $B$ is the same digit on $2^{nd}$ and $4^{th}$ place, $C$ is the digit on $3^{rd}$ place.
The palindrome must be even, if the number in position $A$ can only be $2,4,6$ or $8$. This number cannot be $0$ because if the first digit is $0$, it would make the $5$ digit number a $4$ digit number. So, the place $A$ can be filled by $4$ ways.
The number in position $B$could be $0,1,2,3,4,5,6,7,8,9$. So the place $B$ can be filled by $10$ ways.
Also, the number in position $C$ could be the same, i.e., $0,1,2,3,4,5,6,7,8,9$. So the place $C$ can be filled by $10$ ways.
So, the desired number of $5$ digits even palindromes$ = 4 \times 10 \times 10$$ = 400$
Option A is the correct answer.
Note: An another method to solve this problem is described as follows:
The first and last digits can only be even integers and are the same in $4$ ways, i.e., $2,4,6$ or $8$.
The second and fourth digits are the same but ranges from $0 - 9$ in $10$ ways.
The third digit could be any integer from $0 - 9$ in $10$ ways.
So the desired number of $5$ digits even palindromes $ = 4 \times 10 \times 10 = 400$
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE