Answer
Verified
459.9k+ views
Hint: A palindrome is a number that reads the same forward and backward, such as $242$. The five digit palindrome is of the form of $ABCBA$; where $A$ is the same digit on $1^{st}$ and $5^{th}$ place, $B$ is the same digit on $2^{nd}$ and $4^{th}$ place, $C$ is the digit on $3^{rd}$ place.
Complete step-by-step answer:
Let the five digit palindrome is of the form of $ABCBA$; where $A$ is the same digit on $1^{st}$ and $5^{th}$ place, $B$ is the same digit on $2^{nd}$ and $4^{th}$ place, $C$ is the digit on $3^{rd}$ place.
The palindrome must be even, if the number in position $A$ can only be $2,4,6$ or $8$. This number cannot be $0$ because if the first digit is $0$, it would make the $5$ digit number a $4$ digit number. So, the place $A$ can be filled by $4$ ways.
The number in position $B$could be $0,1,2,3,4,5,6,7,8,9$. So the place $B$ can be filled by $10$ ways.
Also, the number in position $C$ could be the same, i.e., $0,1,2,3,4,5,6,7,8,9$. So the place $C$ can be filled by $10$ ways.
So, the desired number of $5$ digits even palindromes$ = 4 \times 10 \times 10$$ = 400$
Option A is the correct answer.
Note: An another method to solve this problem is described as follows:
The first and last digits can only be even integers and are the same in $4$ ways, i.e., $2,4,6$ or $8$.
The second and fourth digits are the same but ranges from $0 - 9$ in $10$ ways.
The third digit could be any integer from $0 - 9$ in $10$ ways.
So the desired number of $5$ digits even palindromes $ = 4 \times 10 \times 10 = 400$
Complete step-by-step answer:
Let the five digit palindrome is of the form of $ABCBA$; where $A$ is the same digit on $1^{st}$ and $5^{th}$ place, $B$ is the same digit on $2^{nd}$ and $4^{th}$ place, $C$ is the digit on $3^{rd}$ place.
The palindrome must be even, if the number in position $A$ can only be $2,4,6$ or $8$. This number cannot be $0$ because if the first digit is $0$, it would make the $5$ digit number a $4$ digit number. So, the place $A$ can be filled by $4$ ways.
The number in position $B$could be $0,1,2,3,4,5,6,7,8,9$. So the place $B$ can be filled by $10$ ways.
Also, the number in position $C$ could be the same, i.e., $0,1,2,3,4,5,6,7,8,9$. So the place $C$ can be filled by $10$ ways.
So, the desired number of $5$ digits even palindromes$ = 4 \times 10 \times 10$$ = 400$
Option A is the correct answer.
Note: An another method to solve this problem is described as follows:
The first and last digits can only be even integers and are the same in $4$ ways, i.e., $2,4,6$ or $8$.
The second and fourth digits are the same but ranges from $0 - 9$ in $10$ ways.
The third digit could be any integer from $0 - 9$ in $10$ ways.
So the desired number of $5$ digits even palindromes $ = 4 \times 10 \times 10 = 400$
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE