Number of one-one functions from A to B where n(A)= 4 and n(B)= 5.
a). 4
b). 5
c). 120
d). 90
Answer
Verified
405.9k+ views
Hint: Type of questions is based on the function topic more precisely on the classification of Function. As there are five types of functions
i). one-one function
ii). many one function
iii). onto function
iv). into function
v). Bijective function
Complete step-by-step solution:
One –one function is also known as injective function. A one-one function is a function in which for one input we get one output. As to find one –one function we had a direct formula through which we can easily find the one-one function of ‘A’ to ‘B’.
The formula is \[^{n}{{P}_{m}}\] only if $n\ge m$
In which ‘n’ and ‘m’ are the number of elements of B and A respectively. and where p is for permutation, which is further solved as $\dfrac{n!}{(n-m)!}$
Moving further with our question where
n(A)= number of elements of A= 4= m
n(B)= number of elements of B= 5= n
So by comparing it with above formula ‘m’ = 4 and ‘n’= 5
On solving we will get
\[\begin{align}
& {{=}^{n}}{{P}_{m}} \\
& {{=}^{5}}{{P}_{4}} \\
& =\dfrac{5!}{(5-4)!} \\
& =\dfrac{5!}{1!} \\
& =\dfrac{5\times 4\times 3\times 2\times 1}{1} \\
& =120 \\
\end{align}\]
Hence, the number of one-one functions are 120. So the answer is 120, i.e. option C.
Note: while solving keep in mind that ‘n’ is the number of elements in ‘B’ and ‘m’ is the number of elements in ‘A’. Moreover this formula is only valid when n is greater than or equal to m $n\ge m$ . If it comes out to be less than m than the answer would be zero (0).
i). one-one function
ii). many one function
iii). onto function
iv). into function
v). Bijective function
Complete step-by-step solution:
One –one function is also known as injective function. A one-one function is a function in which for one input we get one output. As to find one –one function we had a direct formula through which we can easily find the one-one function of ‘A’ to ‘B’.
The formula is \[^{n}{{P}_{m}}\] only if $n\ge m$
In which ‘n’ and ‘m’ are the number of elements of B and A respectively. and where p is for permutation, which is further solved as $\dfrac{n!}{(n-m)!}$
Moving further with our question where
n(A)= number of elements of A= 4= m
n(B)= number of elements of B= 5= n
So by comparing it with above formula ‘m’ = 4 and ‘n’= 5
On solving we will get
\[\begin{align}
& {{=}^{n}}{{P}_{m}} \\
& {{=}^{5}}{{P}_{4}} \\
& =\dfrac{5!}{(5-4)!} \\
& =\dfrac{5!}{1!} \\
& =\dfrac{5\times 4\times 3\times 2\times 1}{1} \\
& =120 \\
\end{align}\]
Hence, the number of one-one functions are 120. So the answer is 120, i.e. option C.
Note: while solving keep in mind that ‘n’ is the number of elements in ‘B’ and ‘m’ is the number of elements in ‘A’. Moreover this formula is only valid when n is greater than or equal to m $n\ge m$ . If it comes out to be less than m than the answer would be zero (0).
Recently Updated Pages
Class 11 Question and Answer - Your Ultimate Solutions Guide
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE