
Number of points , where $f(x) = \cos \left| x \right| + \left| {\sin x} \right|$ is not differentiable in x$ \in \left[ {0,4\pi } \right],{\text{ is:}}$
A. 2
B. 3
C. 4
D. 5
Answer
620.7k+ views
Hint: Find f(x) and f’(x) and continue with differentiability criteria. Observe the nature of given trigonometric functions.
Complete step-by-step answer:
We have been given that x$ \in \left[ {0,4\pi } \right]$ for which $\left| x \right| = x$
$f(x) = \cos \left| x \right| + \left| {\sin x} \right|$
Now,
$
f(x) = \cos x + \sin x{\text{ }}0 \leqslant x < \pi \\
{\text{ }} = \cos x - \sin x{\text{ }}\pi \leqslant x < 2\pi \\
{\text{ }} = \cos x + \sin x{\text{ 2}}\pi \leqslant x < 3\pi \\
{\text{ }} = \cos x - \sin x{\text{ 3}}\pi \leqslant x < 4\pi \\
{\text{Therefore, }} \\
f'(x) = - \sin x + \cos x{\text{ }}0 \leqslant x < \pi \\
{\text{ }} = - \sin x - \cos x{\text{ }}\pi \leqslant x < 2\pi \\
{\text{ }} = - \sin x + \cos x{\text{ 2}}\pi \leqslant x < 3\pi \\
{\text{ }} = - \sin x - \cos x{\text{ 3}}\pi \leqslant x < 4\pi \\
{\text{Now at }}x = \pi \\
f'(\pi ) = - \sin \pi + \cos \pi = - 1{\text{ if x < }}\pi \\
f'(\pi ) = - \sin \pi - \cos \pi = 1{\text{ if x}} > \pi \\
{\text{ }}\therefore {\text{ Function is not differentiable at }}x = \pi \\
{\text{Similarly, we can find that the function is not differentiable at }}x = 2\pi ,3\pi \\
\\
{\text{ }} \\
$
Also, any function is not differentiable at the end points for a given closed interval. So the function is not differentiable at x=0, $4\pi$
Therefore the answer is 5.
Note: One must remember the range and nature of trigonometric functions in order to solve such similar problems.
Complete step-by-step answer:
We have been given that x$ \in \left[ {0,4\pi } \right]$ for which $\left| x \right| = x$
$f(x) = \cos \left| x \right| + \left| {\sin x} \right|$
Now,
$
f(x) = \cos x + \sin x{\text{ }}0 \leqslant x < \pi \\
{\text{ }} = \cos x - \sin x{\text{ }}\pi \leqslant x < 2\pi \\
{\text{ }} = \cos x + \sin x{\text{ 2}}\pi \leqslant x < 3\pi \\
{\text{ }} = \cos x - \sin x{\text{ 3}}\pi \leqslant x < 4\pi \\
{\text{Therefore, }} \\
f'(x) = - \sin x + \cos x{\text{ }}0 \leqslant x < \pi \\
{\text{ }} = - \sin x - \cos x{\text{ }}\pi \leqslant x < 2\pi \\
{\text{ }} = - \sin x + \cos x{\text{ 2}}\pi \leqslant x < 3\pi \\
{\text{ }} = - \sin x - \cos x{\text{ 3}}\pi \leqslant x < 4\pi \\
{\text{Now at }}x = \pi \\
f'(\pi ) = - \sin \pi + \cos \pi = - 1{\text{ if x < }}\pi \\
f'(\pi ) = - \sin \pi - \cos \pi = 1{\text{ if x}} > \pi \\
{\text{ }}\therefore {\text{ Function is not differentiable at }}x = \pi \\
{\text{Similarly, we can find that the function is not differentiable at }}x = 2\pi ,3\pi \\
\\
{\text{ }} \\
$
Also, any function is not differentiable at the end points for a given closed interval. So the function is not differentiable at x=0, $4\pi$
Therefore the answer is 5.
Note: One must remember the range and nature of trigonometric functions in order to solve such similar problems.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

