Number of $\sigma $ and $\pi $ bonds in ${C_2}$ molecule is/are:
(A) $1\sigma {\text{ and 1}}\pi $
(B) $1\sigma {\text{ and 2}}\pi $
(C) $2\pi {\text{ only}}$
(D) $1\sigma {\text{ and 3}}\pi $
Answer
Verified
118.2k+ views
Hint: Recall the molecular orbital theory (MOT) and write the electronic configuration of ${C_2}$ molecule according to MOT. You will find that the ${C_2}$ molecule has two sets of paired orbitals in the degenerate pi-bonding orbitals and bond order comes out to be 2. Thus, ${C_2}$ molecule will form two bonds and only these 4 electrons in the degenerate pi-bonding orbitals will be involved in bonding.
Complete step by step solution:
Diatomic carbon is a green-greyish inorganic compound. It has a chemical formula ${C_2}$ and written as $C = C$. It is a component of carbon vapour and is unstable at ambient temperature. Its IUPAC name is ethenediylidene or dicarbon.
Bonding in ${C_2}$ molecule: Configuration of ${C_2}$ molecule according to molecular orbital theory (MOT) is: ${(\sigma 1s)^2}{({\sigma ^*}1s)^2}{(\sigma 2s)^2}{({\sigma ^*}2s)^2}{(\pi 2{p_x})^2}{(\pi 2{p_y})^2}$
The bond order of ${C_2}$ molecule is:
Bond order= $\dfrac{{{\text{no}}{\text{. of bonding electrons - no}}{\text{. of antibonding electrons }}}}{2} = \dfrac{{8 - 4}}{2} = 2$
Therefore, the bond order of ${C_2}$ molecule is two. This means there should exist a double bond between the two carbons in a ${C_2}$ molecule. But some studies show that a quadruple bond exists in dicarbon. MO theory also shows that the last two paired sets of electrons enter in the degenerate (having same energy) pi-bonding set of orbitals i.e. $\pi 2{p_x}$ and $\pi 2{p_y}$. These 4 electrons are in the pi orbitals and thus the two bonds in the ${C_2}$ molecule will be pi bonds only and no sigma bond. Usually, whenever there is a double bond, one is a sigma bond before a pi-bond. But this is not the case in ${C_2}$ molecules.
Thus, the number of $\sigma $ and $\pi $ bonds in ${C_2}$ molecule will be zero and two respectively.
Therefore, the correct option is C.
Note: Usually most people think that ${C_2}$ molecule, having 8 valence electrons, does not exist. But it does exist at very high temperatures and in the gaseous state. At low temperatures, ${C_2}$ aggregates to form many allotropic forms of carbon like buckyballs, nanotubes, graphene sheets, graphite, soot and so on. ${C_2}$ or carbon is diamagnetic in nature because all the electrons are paired.
Complete step by step solution:
Diatomic carbon is a green-greyish inorganic compound. It has a chemical formula ${C_2}$ and written as $C = C$. It is a component of carbon vapour and is unstable at ambient temperature. Its IUPAC name is ethenediylidene or dicarbon.
Bonding in ${C_2}$ molecule: Configuration of ${C_2}$ molecule according to molecular orbital theory (MOT) is: ${(\sigma 1s)^2}{({\sigma ^*}1s)^2}{(\sigma 2s)^2}{({\sigma ^*}2s)^2}{(\pi 2{p_x})^2}{(\pi 2{p_y})^2}$
The bond order of ${C_2}$ molecule is:
Bond order= $\dfrac{{{\text{no}}{\text{. of bonding electrons - no}}{\text{. of antibonding electrons }}}}{2} = \dfrac{{8 - 4}}{2} = 2$
Therefore, the bond order of ${C_2}$ molecule is two. This means there should exist a double bond between the two carbons in a ${C_2}$ molecule. But some studies show that a quadruple bond exists in dicarbon. MO theory also shows that the last two paired sets of electrons enter in the degenerate (having same energy) pi-bonding set of orbitals i.e. $\pi 2{p_x}$ and $\pi 2{p_y}$. These 4 electrons are in the pi orbitals and thus the two bonds in the ${C_2}$ molecule will be pi bonds only and no sigma bond. Usually, whenever there is a double bond, one is a sigma bond before a pi-bond. But this is not the case in ${C_2}$ molecules.
Thus, the number of $\sigma $ and $\pi $ bonds in ${C_2}$ molecule will be zero and two respectively.
Therefore, the correct option is C.
Note: Usually most people think that ${C_2}$ molecule, having 8 valence electrons, does not exist. But it does exist at very high temperatures and in the gaseous state. At low temperatures, ${C_2}$ aggregates to form many allotropic forms of carbon like buckyballs, nanotubes, graphene sheets, graphite, soot and so on. ${C_2}$ or carbon is diamagnetic in nature because all the electrons are paired.
Recently Updated Pages
JEE Main 2025: Application Form, Exam Dates, Eligibility, and More
A team played 40 games in a season and won 24 of them class 9 maths JEE_Main
Here are the shadows of 3 D objects when seen under class 9 maths JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
Madhuri went to a supermarket The price changes are class 9 maths JEE_Main
Trending doubts
Physics Average Value and RMS Value JEE Main 2025
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Electron Gain Enthalpy and Electron Affinity for JEE
Collision - Important Concepts and Tips for JEE
Clemmenson and Wolff Kishner Reductions for JEE
JEE Main Chemistry Exam Pattern 2025
Other Pages
NCERT Solutions for Class 11 Chemistry In Hindi Chapter 7 Equilibrium
JEE Advanced 2025 Revision Notes for Physics on Modern Physics
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions
Aqueous solution of HNO3 KOH CH3COOH CH3COONa of identical class 11 chemistry JEE_Main
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
The number of d p bonds present respectively in SO2 class 11 chemistry JEE_Main