Number of values of x (real or complex) simultaneously satisfying the system of equations
1 + z + {z^2} + {z^3} + ........ + {z^{17}} = 0 $
And
$ 1 + z + {z^2} + {z^3} + ........ + {z^{13}} = 0 $
A.-1
B.2
C.3
D.4
Answer
Verified
473.4k+ views
Hint: We will use the given equations to find the value of 1 through simplification. These values will then be distributed in any equation to check whether it satisfies the system or not.
Complete step-by-step answer:
We have,
$ 1 + z + {z^2} + {z^3} + ........ + {z^{17}} = 0...........(1) $
$ 1 + z + {z^2} + {z^3} + ........ + {z^{13}} = 0..........(2) $
From (2), it can be seen that the sum of terms till $ {z^{13}} $ is 0.
Remaining terms from (1) are:
$ {z^{14}} + {z^{15}} + {z^{16}} + {z^{17}} = 0 $
Taking $ {z^{14}} $ common, we get:
$ {z^{14}}(1 + z + {z^2} + {z^3}) = 0 $
Factorising:
$ {z^{14}}\left[ {(1 + {z^2}) + z(1 + {z^2})} \right] = 0 $
$ {z^{14}}\left[ {(1 + {z^2})(1 + z)} \right] = 0 $
$ {z^{14}}\left[ {\{ {z^2} - {{(\sqrt { - 1} )}^2}\} (1 + z)} \right] = 0 $
$ {z^{14}}\left[ {(z + i)(z - i)(1 + z)} \right] = 0 $
$ ({\text{As }}\sqrt { - 1} = i{\text{ and using }}{{\text{a}}^2} - {b^2} = (a + b)(a - b)] $
From here, we get:
$ {z^{14}} = 0,z + i = 0,z - i = 0,z + 1 = 0 $
Values of z obtained are:
z = 0,-i, i , -1
Substituting these in (2) and checking which will satisfy the system of equations.
z = 0:
$ 1 + z + {z^2} + .........{z^{13}} = 0 $
$ 1 + 0 + 0......0 \ne 0 $
Does not satisfy the equation.
$ z = - i \Rightarrow {z^2} = {i^2} = - 1 $
$ 1 + z + {z^2} + .........{z^{13}} = 0 $
$ 1 - i - 1 + i + {z^{12}} + {z^{13}} $
All terms cancel out except z12 and z13.
\[{z^{12}} + {z^{13}} = 0\]
$ 1 - i \ne 0 $
Does not satisfy the equation.
$ z = i \Rightarrow {z^2} = {i^2} = - 1 $
$ 1 + z + {z^2} + .........{z^{13}} = 0 $
All terms cancel out except z12 and z13.
\[{z^{12}} + {z^{13}} = 0\]
$ 1 + i \ne 0 $
Does not satisfy the equation.
$ z = - 1 $
$ 1 + z + {z^2} + .........{z^{13}} = 0 $
$ 1 - 1 + 1 - 1 + 1...... - 1 = 0 $
Satisfy the equation.
Therefore out of all the values of z, only ‘-1’ satisfies the system of equations and hence the correct option is A)-1
So, the correct answer is “Option A”.
Note: ‘i’ used here stands for iota and is used for representing $ \sqrt { - 1} $ .
It's important values to remember are:
$ {i^2} = - 1,{i^4} = 1 $
And all multiples of 4 in its power give the answer 1 and multiples of 2 give (-1).
Complete step-by-step answer:
We have,
$ 1 + z + {z^2} + {z^3} + ........ + {z^{17}} = 0...........(1) $
$ 1 + z + {z^2} + {z^3} + ........ + {z^{13}} = 0..........(2) $
From (2), it can be seen that the sum of terms till $ {z^{13}} $ is 0.
Remaining terms from (1) are:
$ {z^{14}} + {z^{15}} + {z^{16}} + {z^{17}} = 0 $
Taking $ {z^{14}} $ common, we get:
$ {z^{14}}(1 + z + {z^2} + {z^3}) = 0 $
Factorising:
$ {z^{14}}\left[ {(1 + {z^2}) + z(1 + {z^2})} \right] = 0 $
$ {z^{14}}\left[ {(1 + {z^2})(1 + z)} \right] = 0 $
$ {z^{14}}\left[ {\{ {z^2} - {{(\sqrt { - 1} )}^2}\} (1 + z)} \right] = 0 $
$ {z^{14}}\left[ {(z + i)(z - i)(1 + z)} \right] = 0 $
$ ({\text{As }}\sqrt { - 1} = i{\text{ and using }}{{\text{a}}^2} - {b^2} = (a + b)(a - b)] $
From here, we get:
$ {z^{14}} = 0,z + i = 0,z - i = 0,z + 1 = 0 $
Values of z obtained are:
z = 0,-i, i , -1
Substituting these in (2) and checking which will satisfy the system of equations.
z = 0:
$ 1 + z + {z^2} + .........{z^{13}} = 0 $
$ 1 + 0 + 0......0 \ne 0 $
Does not satisfy the equation.
$ z = - i \Rightarrow {z^2} = {i^2} = - 1 $
$ 1 + z + {z^2} + .........{z^{13}} = 0 $
$ 1 - i - 1 + i + {z^{12}} + {z^{13}} $
All terms cancel out except z12 and z13.
\[{z^{12}} + {z^{13}} = 0\]
$ 1 - i \ne 0 $
Does not satisfy the equation.
$ z = i \Rightarrow {z^2} = {i^2} = - 1 $
$ 1 + z + {z^2} + .........{z^{13}} = 0 $
All terms cancel out except z12 and z13.
\[{z^{12}} + {z^{13}} = 0\]
$ 1 + i \ne 0 $
Does not satisfy the equation.
$ z = - 1 $
$ 1 + z + {z^2} + .........{z^{13}} = 0 $
$ 1 - 1 + 1 - 1 + 1...... - 1 = 0 $
Satisfy the equation.
Therefore out of all the values of z, only ‘-1’ satisfies the system of equations and hence the correct option is A)-1
So, the correct answer is “Option A”.
Note: ‘i’ used here stands for iota and is used for representing $ \sqrt { - 1} $ .
It's important values to remember are:
$ {i^2} = - 1,{i^4} = 1 $
And all multiples of 4 in its power give the answer 1 and multiples of 2 give (-1).
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE