Answer
Verified
499.2k+ views
Hint: Select the lowest and highest two digit terms divisible by $3$. To see whether the series is an A.P or not. Then if it is in A.P solve it by taking the ${{n}^{th}}$ term of the A.P. Find the value of $n$. You will get the answer.
We use ten digits in the way we count. Sometimes we use one digit to represent a number and sometimes we use more. In this lesson, you'll learn how many digits are in any given numeral, and recognize a digit when you see it. You will also begin learning about place value.
This is the numeral: $51$.These are the digits in that numeral: $5$ and $1$. The numeral has two digits because two symbols, or digits, make up the numeral $51$. What about this numeral ? $452$. This numeral has three digits: $4,5$ and $2$.
That $7$ is a special kind of symbol. It's called a digit. We have ten digits we use to make up all numerals. A numeral is a number written down. These digits are $0,1,2,3,4,5,6,7,8$ and $9$. That's it! You can make any numeral you want out of those ten digits.
Just like a red light means 'stop', a $7$ means 'seven'. It's a single symbol that represents a numeral. Yes, just like this is a symbol to stop.
We know, first two digit number divisible by $3$ is $12$ and the last two digit number divisible by $3$ is $99$. Thus, we get $12,15,......,99$.
So the lowest two digit number divisible by $3$ is $12$.
Highest two digit number divisible by $3$ is $99$.
So we can see the difference between the numbers that are divisible by 3, is $3$.
So the above series is in A.P.
We have to find it in terms of $n$.
And here$a=12,d=3,{{a}_{n}}=99$
Thus, the ${{n}^{th}}$term of A.P is :
${{a}_{n}}=a+(n-1)d$
Where,
$a=$First-term
$d=$ Common difference
$n=$ number of terms
${{a}_{n}}={{n}^{th}}$term
So now applying the formula for 99, we get,
$99=12+(n-1)3$
Simplifying further we get,
$\begin{align}
& 99-12=(n-1)3 \\
& 87=3n-3 \\
& 90=3n \\
& n=30 \\
\end{align}$
So we get $n=30$.
Therefore, the number of two digits divisible by $3$ are $30$.
Note: Read the question properly. Also, we should know the lowest and highest two digit terms divisible by $3$. So the concepts related to A.P should be clear. Here we have used the concept of A.P that is we have used ${{n}^{th}}$ term of A.P which is ${{a}_{n}}=a+(n-1)d$.
We use ten digits in the way we count. Sometimes we use one digit to represent a number and sometimes we use more. In this lesson, you'll learn how many digits are in any given numeral, and recognize a digit when you see it. You will also begin learning about place value.
This is the numeral: $51$.These are the digits in that numeral: $5$ and $1$. The numeral has two digits because two symbols, or digits, make up the numeral $51$. What about this numeral ? $452$. This numeral has three digits: $4,5$ and $2$.
That $7$ is a special kind of symbol. It's called a digit. We have ten digits we use to make up all numerals. A numeral is a number written down. These digits are $0,1,2,3,4,5,6,7,8$ and $9$. That's it! You can make any numeral you want out of those ten digits.
Just like a red light means 'stop', a $7$ means 'seven'. It's a single symbol that represents a numeral. Yes, just like this is a symbol to stop.
We know, first two digit number divisible by $3$ is $12$ and the last two digit number divisible by $3$ is $99$. Thus, we get $12,15,......,99$.
So the lowest two digit number divisible by $3$ is $12$.
Highest two digit number divisible by $3$ is $99$.
So we can see the difference between the numbers that are divisible by 3, is $3$.
So the above series is in A.P.
We have to find it in terms of $n$.
And here$a=12,d=3,{{a}_{n}}=99$
Thus, the ${{n}^{th}}$term of A.P is :
${{a}_{n}}=a+(n-1)d$
Where,
$a=$First-term
$d=$ Common difference
$n=$ number of terms
${{a}_{n}}={{n}^{th}}$term
So now applying the formula for 99, we get,
$99=12+(n-1)3$
Simplifying further we get,
$\begin{align}
& 99-12=(n-1)3 \\
& 87=3n-3 \\
& 90=3n \\
& n=30 \\
\end{align}$
So we get $n=30$.
Therefore, the number of two digits divisible by $3$ are $30$.
Note: Read the question properly. Also, we should know the lowest and highest two digit terms divisible by $3$. So the concepts related to A.P should be clear. Here we have used the concept of A.P that is we have used ${{n}^{th}}$ term of A.P which is ${{a}_{n}}=a+(n-1)d$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE