
How many numbers of two digits are divisible by $3$ ?
Answer
621.6k+ views
Hint: Select the lowest and highest two digit terms divisible by $3$. To see whether the series is an A.P or not. Then if it is in A.P solve it by taking the ${{n}^{th}}$ term of the A.P. Find the value of $n$. You will get the answer.
We use ten digits in the way we count. Sometimes we use one digit to represent a number and sometimes we use more. In this lesson, you'll learn how many digits are in any given numeral, and recognize a digit when you see it. You will also begin learning about place value.
This is the numeral: $51$.These are the digits in that numeral: $5$ and $1$. The numeral has two digits because two symbols, or digits, make up the numeral $51$. What about this numeral ? $452$. This numeral has three digits: $4,5$ and $2$.
That $7$ is a special kind of symbol. It's called a digit. We have ten digits we use to make up all numerals. A numeral is a number written down. These digits are $0,1,2,3,4,5,6,7,8$ and $9$. That's it! You can make any numeral you want out of those ten digits.
Just like a red light means 'stop', a $7$ means 'seven'. It's a single symbol that represents a numeral. Yes, just like this is a symbol to stop.
We know, first two digit number divisible by $3$ is $12$ and the last two digit number divisible by $3$ is $99$. Thus, we get $12,15,......,99$.
So the lowest two digit number divisible by $3$ is $12$.
Highest two digit number divisible by $3$ is $99$.
So we can see the difference between the numbers that are divisible by 3, is $3$.
So the above series is in A.P.
We have to find it in terms of $n$.
And here$a=12,d=3,{{a}_{n}}=99$
Thus, the ${{n}^{th}}$term of A.P is :
${{a}_{n}}=a+(n-1)d$
Where,
$a=$First-term
$d=$ Common difference
$n=$ number of terms
${{a}_{n}}={{n}^{th}}$term
So now applying the formula for 99, we get,
$99=12+(n-1)3$
Simplifying further we get,
$\begin{align}
& 99-12=(n-1)3 \\
& 87=3n-3 \\
& 90=3n \\
& n=30 \\
\end{align}$
So we get $n=30$.
Therefore, the number of two digits divisible by $3$ are $30$.
Note: Read the question properly. Also, we should know the lowest and highest two digit terms divisible by $3$. So the concepts related to A.P should be clear. Here we have used the concept of A.P that is we have used ${{n}^{th}}$ term of A.P which is ${{a}_{n}}=a+(n-1)d$.
We use ten digits in the way we count. Sometimes we use one digit to represent a number and sometimes we use more. In this lesson, you'll learn how many digits are in any given numeral, and recognize a digit when you see it. You will also begin learning about place value.
This is the numeral: $51$.These are the digits in that numeral: $5$ and $1$. The numeral has two digits because two symbols, or digits, make up the numeral $51$. What about this numeral ? $452$. This numeral has three digits: $4,5$ and $2$.
That $7$ is a special kind of symbol. It's called a digit. We have ten digits we use to make up all numerals. A numeral is a number written down. These digits are $0,1,2,3,4,5,6,7,8$ and $9$. That's it! You can make any numeral you want out of those ten digits.
Just like a red light means 'stop', a $7$ means 'seven'. It's a single symbol that represents a numeral. Yes, just like this is a symbol to stop.
We know, first two digit number divisible by $3$ is $12$ and the last two digit number divisible by $3$ is $99$. Thus, we get $12,15,......,99$.
So the lowest two digit number divisible by $3$ is $12$.
Highest two digit number divisible by $3$ is $99$.
So we can see the difference between the numbers that are divisible by 3, is $3$.
So the above series is in A.P.
We have to find it in terms of $n$.
And here$a=12,d=3,{{a}_{n}}=99$
Thus, the ${{n}^{th}}$term of A.P is :
${{a}_{n}}=a+(n-1)d$
Where,
$a=$First-term
$d=$ Common difference
$n=$ number of terms
${{a}_{n}}={{n}^{th}}$term
So now applying the formula for 99, we get,
$99=12+(n-1)3$
Simplifying further we get,
$\begin{align}
& 99-12=(n-1)3 \\
& 87=3n-3 \\
& 90=3n \\
& n=30 \\
\end{align}$
So we get $n=30$.
Therefore, the number of two digits divisible by $3$ are $30$.
Note: Read the question properly. Also, we should know the lowest and highest two digit terms divisible by $3$. So the concepts related to A.P should be clear. Here we have used the concept of A.P that is we have used ${{n}^{th}}$ term of A.P which is ${{a}_{n}}=a+(n-1)d$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

