
${O_2}$ is evolved by heating $KCl{O_3}$ using $Mn{O_2}$ as a catalyst.
$2KCl{O_3}\xrightarrow{{Mn{O_2}}}2KCl + 3{O_2}$
Calculate the mass of $KCl{O_3}$ required to produce 6.72 litre of ${O_2}$ at STP?
[Please give your answer in the form of nearest integer]
Answer
474.3k+ views
Hint: From the given reaction, we can see that 2 moles of $KCl{O_3}$ are giving 3 moles of ${O_2}$. Volume of 1 mole of any substance at STP is 22.4 litres. So, by unitary method we can calculate the mass of $KCl{O_3}$ needed for $3 \times 22.4l$ of ${O_2}$.
Complete step by step solution:
Given reaction is:
$2KCl{O_3}\xrightarrow{{Mn{O_2}}}2KCl + 3{O_2}$
Now, we know that molecular mass is the sum of atomic masses of the elements present in a molecule. Molecular mass of a substance is calculated by multiplying the atomic masses of each element in the substance by the number of its atoms and adding them together.
Atomic mass of K = 39, atomic mass of Cl= 35.5, atomic mass of O = 16.
Now, molecular mass of $KCl{O_3}$ = ${\text{Atomic mass of K + Atomic mass of Cl + 3}} \times {\text{Atomic mass of O}}$
$\therefore $ Molecular mass of $KCl{O_3}$= $39 + 35.5 + 3 \times 16 = 122.5g$
Similarly molecular mass of KCl = $39 + 35.5 = 74.5g$
We also know that the volume of 1 mole of any substance at STP is 22.4 litres. Thus, the volume of 3 moles of ${O_2}$ is $3 \times 22.4l$.
It is clear from the given reaction that 2 moles of $KCl{O_3}$ are giving 3 moles of ${O_2}$. Therefore, $2 \times 122.5g$ of $KCl{O_3}$ is required to produce $3 \times 22.4l$ of ${O_2}$.
Or, $3 \times 22.4l$ of ${O_2}$ is produced by $KCl{O_3}$= $2 \times 122.5g$.
Hence, by unitary method,
6.72 litre of ${O_2}$ is produced by $KCl{O_3}$ = $\dfrac{{2 \times 122.5g}}{{3 \times 22.4l}} \times 6.72 = 24.5g$.
So, the mass of $KCl{O_3}$ required to produce 6.72 litre of ${O_2}$ at STP is 24.5 g. Hence, this is the required answer.
Note: At standard temperature and pressure (STP) condition, the volume occupied by one mole of any substance is called molar volume and its value is 22.4 litres. You can also be asked to calculate the number of molecules of any substance in the reaction. So you should know that 1 mole of any substance contains Avogadro's number i.e., $6.022 \times {10^{23}}$ of molecules.
Complete step by step solution:
Given reaction is:
$2KCl{O_3}\xrightarrow{{Mn{O_2}}}2KCl + 3{O_2}$
Now, we know that molecular mass is the sum of atomic masses of the elements present in a molecule. Molecular mass of a substance is calculated by multiplying the atomic masses of each element in the substance by the number of its atoms and adding them together.
Atomic mass of K = 39, atomic mass of Cl= 35.5, atomic mass of O = 16.
Now, molecular mass of $KCl{O_3}$ = ${\text{Atomic mass of K + Atomic mass of Cl + 3}} \times {\text{Atomic mass of O}}$
$\therefore $ Molecular mass of $KCl{O_3}$= $39 + 35.5 + 3 \times 16 = 122.5g$
Similarly molecular mass of KCl = $39 + 35.5 = 74.5g$
We also know that the volume of 1 mole of any substance at STP is 22.4 litres. Thus, the volume of 3 moles of ${O_2}$ is $3 \times 22.4l$.
It is clear from the given reaction that 2 moles of $KCl{O_3}$ are giving 3 moles of ${O_2}$. Therefore, $2 \times 122.5g$ of $KCl{O_3}$ is required to produce $3 \times 22.4l$ of ${O_2}$.
Or, $3 \times 22.4l$ of ${O_2}$ is produced by $KCl{O_3}$= $2 \times 122.5g$.
Hence, by unitary method,
6.72 litre of ${O_2}$ is produced by $KCl{O_3}$ = $\dfrac{{2 \times 122.5g}}{{3 \times 22.4l}} \times 6.72 = 24.5g$.
So, the mass of $KCl{O_3}$ required to produce 6.72 litre of ${O_2}$ at STP is 24.5 g. Hence, this is the required answer.
Note: At standard temperature and pressure (STP) condition, the volume occupied by one mole of any substance is called molar volume and its value is 22.4 litres. You can also be asked to calculate the number of molecules of any substance in the reaction. So you should know that 1 mole of any substance contains Avogadro's number i.e., $6.022 \times {10^{23}}$ of molecules.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

Arrange Water ethanol and phenol in increasing order class 11 chemistry CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

A mixture of o nitrophenol and p nitrophenol can be class 11 chemistry CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE
