Answer
Verified
468.9k+ views
Hint: We will solve this question by option verification method and use the concept that the sum of the internal angles of a triangle is 108°. We will find the angles given in the figure. With the help of the given angles, we will find one of the angles of triangle BCD. As soon as we find one angle of triangle BCD, we will see from the options which of the given options satisfy the sum of the internal angles of a triangle concept.
Complete step-by-step answer:
From the given figure, we make the following observations:
$ \angle $ BAD = 70°……(1)
$ \angle $ ABD = 56°……(2)
$ \angle $ ADC = 72°……(3)
We also make note that points ABD form a triangle. Similarly, BCD also make a triangle.
Now, $ \angle $ ADC can also be written as the sum of $ \angle $ ADB and $ \angle $ BDC.
$ \Rightarrow $ $ \angle $ ADC = $ \angle $ ADB + $ \angle $ BDC……(4)
We also know that the sum of the internal angles of a triangle is 180°.
So, in triangle ABD, $ \angle $ ABD + $ \angle $ ADB + $ \angle $ BAD = 180°
From (1) and (2), $ \angle $ BAD = 70° and $ \angle $ ABD = 56°.
$ \Rightarrow $ 56° + $ \angle $ ADB + 70° = 180°
$ \Rightarrow $ $ \angle $ ADB = 54°
From (4) and (3), we know that $ \angle $ ADC = $ \angle $ ADB + $ \angle $ BDC and $ \angle $ ADC = 72°
$ \Rightarrow $ $ \angle $ ADC = $ \angle $ ADB + $ \angle $ BDC
$ \Rightarrow $ 72° = 54° + $ \angle $ BDC
$ \Rightarrow $ $ \angle $ BDC = 18°
Thus, we can rule out option (d).
Now, in triangle BDC, $ \angle $ BDC + $ \angle $ BCD + $ \angle $ CBD = 180°
$ \Rightarrow $ 18° + $ \angle $ BCD + $ \angle $ CBD = 180°
$ \Rightarrow $ $ \angle $ BCD + $ \angle $ CBD = 162°
From the options, we can see that option (a) satisfies this condition as in option (a), $ \angle $ BCD = 110°; $ \angle $ CBD = 52°, so 110° + 52° = 162°.
So, the correct answer is “Option A”.
Note: This is one method to use the concepts of sum of the internal angles of a triangle. Another principal is that the sum of the internal angles of a quadrilateral inscribed in a circle is 360°. In the figure, ABCD forms a quadrilateral. Even then, we have to use option verification as there will be two unknowns.
Complete step-by-step answer:
From the given figure, we make the following observations:
$ \angle $ BAD = 70°……(1)
$ \angle $ ABD = 56°……(2)
$ \angle $ ADC = 72°……(3)
We also make note that points ABD form a triangle. Similarly, BCD also make a triangle.
Now, $ \angle $ ADC can also be written as the sum of $ \angle $ ADB and $ \angle $ BDC.
$ \Rightarrow $ $ \angle $ ADC = $ \angle $ ADB + $ \angle $ BDC……(4)
We also know that the sum of the internal angles of a triangle is 180°.
So, in triangle ABD, $ \angle $ ABD + $ \angle $ ADB + $ \angle $ BAD = 180°
From (1) and (2), $ \angle $ BAD = 70° and $ \angle $ ABD = 56°.
$ \Rightarrow $ 56° + $ \angle $ ADB + 70° = 180°
$ \Rightarrow $ $ \angle $ ADB = 54°
From (4) and (3), we know that $ \angle $ ADC = $ \angle $ ADB + $ \angle $ BDC and $ \angle $ ADC = 72°
$ \Rightarrow $ $ \angle $ ADC = $ \angle $ ADB + $ \angle $ BDC
$ \Rightarrow $ 72° = 54° + $ \angle $ BDC
$ \Rightarrow $ $ \angle $ BDC = 18°
Thus, we can rule out option (d).
Now, in triangle BDC, $ \angle $ BDC + $ \angle $ BCD + $ \angle $ CBD = 180°
$ \Rightarrow $ 18° + $ \angle $ BCD + $ \angle $ CBD = 180°
$ \Rightarrow $ $ \angle $ BCD + $ \angle $ CBD = 162°
From the options, we can see that option (a) satisfies this condition as in option (a), $ \angle $ BCD = 110°; $ \angle $ CBD = 52°, so 110° + 52° = 162°.
So, the correct answer is “Option A”.
Note: This is one method to use the concepts of sum of the internal angles of a triangle. Another principal is that the sum of the internal angles of a quadrilateral inscribed in a circle is 360°. In the figure, ABCD forms a quadrilateral. Even then, we have to use option verification as there will be two unknowns.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE