
On a quiet day, when a whistle crosses you then its pitch decreases in the ratio $⅘$. If the temperature on that day is ${20^0}C$, then the speed of whistle will be ____ (given the velocity of sound at ${0^0}= 332\,m/s$)
A. 48.2 m/s
B. 68.2 m/s
C. 38.2 m/s
D. 108.2 m/s
Answer
419.4k+ views
Hint:To answer this question, we first need to understand what is pitch. A frequency's sensation is generally referred to as a sound's pitch. A high frequency sound wave corresponds to a high pitch sound, whereas a low frequency sound wave corresponds to a low pitch sound.
Complete step by step answer:
As we discussed above the frequency of a sound is directly proportional to its pitch, and the frequency of a sound is directly proportional to its velocity. Relation between temperature and velocity of sound in air is,
$\dfrac{{{V_T}}}{{{V_0}}} = \sqrt {\dfrac{T}{{{T_0}}}} $
(Here ${V_T}$ is the velocity of air at temp $T$(in kelvin) and ${V_0}$ is the velocity of air at temperature ${T_0}$(in kelvin))
As given in the question ${V_0}$= 332 m/s and $T$= ${20^0}C$ and ${T_0}$= ${0^0}C$.
Converting temperatures in kelvin
$T$= 20 + 273 = 293K
$\Rightarrow {T_0}$= 0 + 273 =273K
Substituting the given values
$\dfrac{{{V_T}}}{{332}} = \sqrt {\dfrac{{293}}{{273}}} $
$\Rightarrow \dfrac{{{V_T}}}{{332}} = 1.035$
Therefore ${V_T} = 343.62\,m/s$.
Doppler effect: The Doppler Effect is the shift in wave frequency that occurs as a wave source moves relative to its observer. When a sound source approaches you, for example, the frequency of the sound waves changes, resulting in a higher pitch. Applying Doppler effect when whistle is approaching observer
$\dfrac{{{f_a}}}{{{f_0}}} = \dfrac{{{V_T}}}{{{V_T} - {V_W}}}$
When whistle is distancing from observer,
$\dfrac{{{f_d}}}{{{f_0}}} = \dfrac{{{V_T}}}{{{V_T} + {V_W}}}$
Dividing these equations, we get,
$\dfrac{{{f_d}}}{{{f_a}}} = \dfrac{{{V_T} - {V_W}}}{{{V_T} + {V_W}}}$
As given in the question $\dfrac{{{f_d}}}{{{f_a}}} = \dfrac{4}{5}$
$\dfrac{4}{5} = \dfrac{{{V_T} - {V_W}}}{{{V_T} + {V_W}}}$ and by equating further we get
$\Rightarrow {V_W} = \dfrac{{{V_T}}}{9}$
$\therefore {V_W} = 38.2\,m/s$.........(By substituting value of ${V_T} = 343.62\,m/s$)
Hence, the correct answer is option C.
Note:Molecules with more energy can vibrate faster at higher temperatures. Sound waves can fly faster because molecules vibrate faster. In room temperature air, sound travels at 346 metres per second.
Complete step by step answer:
As we discussed above the frequency of a sound is directly proportional to its pitch, and the frequency of a sound is directly proportional to its velocity. Relation between temperature and velocity of sound in air is,
$\dfrac{{{V_T}}}{{{V_0}}} = \sqrt {\dfrac{T}{{{T_0}}}} $
(Here ${V_T}$ is the velocity of air at temp $T$(in kelvin) and ${V_0}$ is the velocity of air at temperature ${T_0}$(in kelvin))
As given in the question ${V_0}$= 332 m/s and $T$= ${20^0}C$ and ${T_0}$= ${0^0}C$.
Converting temperatures in kelvin
$T$= 20 + 273 = 293K
$\Rightarrow {T_0}$= 0 + 273 =273K
Substituting the given values
$\dfrac{{{V_T}}}{{332}} = \sqrt {\dfrac{{293}}{{273}}} $
$\Rightarrow \dfrac{{{V_T}}}{{332}} = 1.035$
Therefore ${V_T} = 343.62\,m/s$.
Doppler effect: The Doppler Effect is the shift in wave frequency that occurs as a wave source moves relative to its observer. When a sound source approaches you, for example, the frequency of the sound waves changes, resulting in a higher pitch. Applying Doppler effect when whistle is approaching observer
$\dfrac{{{f_a}}}{{{f_0}}} = \dfrac{{{V_T}}}{{{V_T} - {V_W}}}$
When whistle is distancing from observer,
$\dfrac{{{f_d}}}{{{f_0}}} = \dfrac{{{V_T}}}{{{V_T} + {V_W}}}$
Dividing these equations, we get,
$\dfrac{{{f_d}}}{{{f_a}}} = \dfrac{{{V_T} - {V_W}}}{{{V_T} + {V_W}}}$
As given in the question $\dfrac{{{f_d}}}{{{f_a}}} = \dfrac{4}{5}$
$\dfrac{4}{5} = \dfrac{{{V_T} - {V_W}}}{{{V_T} + {V_W}}}$ and by equating further we get
$\Rightarrow {V_W} = \dfrac{{{V_T}}}{9}$
$\therefore {V_W} = 38.2\,m/s$.........(By substituting value of ${V_T} = 343.62\,m/s$)
Hence, the correct answer is option C.
Note:Molecules with more energy can vibrate faster at higher temperatures. Sound waves can fly faster because molecules vibrate faster. In room temperature air, sound travels at 346 metres per second.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE
