Answer
Verified
442.2k+ views
Hint: Using the given pattern, find the number of trees planted in \[{{25}^{th}}\] row. Form an arithmetic progression of 25 terms and apply the formula for sum of ‘n’ terms of A.P given as, \[{{S}_{n}}=\dfrac{n}{2}\times \] [first term + last term], where ‘\[{{S}_{n}}\]’ is the sum of ‘n’ terms, to get the answer.
Complete step-by-step solution
Here, we have been given that the trees are planted on a triangular land such that the first row contains one tree, the second row contains two trees, the third row contains three trees and so on. It is given to us that there are 25 rows in total. So, we have,
\[\Rightarrow \] Number of trees in first row = 1
\[\Rightarrow \] Number of trees in second row = 2
\[\Rightarrow \] Number of trees in third row = 3
Similarly, on observing the pattern, we get,
\[\Rightarrow \] Number of trees in \[{{25}^{th}}\] row = 25
So, the total number of trees in all the 25 rows will be the sum of the number of trees in each row. Let us denote this sum with \[{{S}_{25}}\] because there are 25 rows. So, we have,
\[\Rightarrow {{S}_{25}}=1+2+3+4+.......+25\]
Clearly, we can see that the above sequence is an arithmetic progression whose first term is 1, common difference is 1 and last term is 25. So, applying the formula of sum of ‘n’ terms of an A.P given as: - \[{{S}_{n}}=\dfrac{n}{2}\times \] [first term + last term], we get for n = 25,
\[\begin{align}
& \Rightarrow {{S}_{25}}=\dfrac{25}{2}\times \left[ 1+25 \right] \\
& \Rightarrow {{S}_{25}}=\dfrac{25}{2}\times 26 \\
& \Rightarrow {{S}_{25}}=325 \\
\end{align}\]
Hence, a total of 325 trees are planted in all the 25 rows.
Note: One may note that we cannot add all the numbers from 1 to 25 one by one as it will take a long time. This is why we needed to form a sequence of A.P. so that we can easily determine the sum using the formula given. We can also simplify the formula for sum of ‘n’ terms of an A.P. which will be given as: - \[{{S}_{n}}=\dfrac{n}{2}\times \left[ 2a+\left( n-1 \right)d \right]\], where ‘a’ is the first term and ‘d’ is the common difference.
Complete step-by-step solution
Here, we have been given that the trees are planted on a triangular land such that the first row contains one tree, the second row contains two trees, the third row contains three trees and so on. It is given to us that there are 25 rows in total. So, we have,
\[\Rightarrow \] Number of trees in first row = 1
\[\Rightarrow \] Number of trees in second row = 2
\[\Rightarrow \] Number of trees in third row = 3
Similarly, on observing the pattern, we get,
\[\Rightarrow \] Number of trees in \[{{25}^{th}}\] row = 25
So, the total number of trees in all the 25 rows will be the sum of the number of trees in each row. Let us denote this sum with \[{{S}_{25}}\] because there are 25 rows. So, we have,
\[\Rightarrow {{S}_{25}}=1+2+3+4+.......+25\]
Clearly, we can see that the above sequence is an arithmetic progression whose first term is 1, common difference is 1 and last term is 25. So, applying the formula of sum of ‘n’ terms of an A.P given as: - \[{{S}_{n}}=\dfrac{n}{2}\times \] [first term + last term], we get for n = 25,
\[\begin{align}
& \Rightarrow {{S}_{25}}=\dfrac{25}{2}\times \left[ 1+25 \right] \\
& \Rightarrow {{S}_{25}}=\dfrac{25}{2}\times 26 \\
& \Rightarrow {{S}_{25}}=325 \\
\end{align}\]
Hence, a total of 325 trees are planted in all the 25 rows.
Note: One may note that we cannot add all the numbers from 1 to 25 one by one as it will take a long time. This is why we needed to form a sequence of A.P. so that we can easily determine the sum using the formula given. We can also simplify the formula for sum of ‘n’ terms of an A.P. which will be given as: - \[{{S}_{n}}=\dfrac{n}{2}\times \left[ 2a+\left( n-1 \right)d \right]\], where ‘a’ is the first term and ‘d’ is the common difference.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths