Answer
Verified
438.3k+ views
Hint : Firstly find the power at which the volume of the given ideal gas is raised to. Now, you could recall the expression for molar heat capacity in terms of molar specific heat capacity at constant volume, universal gas constant and the power mentioned above. You could substitute for ${{C}_{V}}$ of an ideal diatomic gas and thus find the answer.
Formula used:
Molar specific heat capacity,
$C={{C}_{V}}-\dfrac{R}{x-1}$
Molar specific heat capacity at constant volume,
${{C}_{V}}=\dfrac{d}{2}R$
Complete answer:
In the question, we are given an ideal diatomic gas whose pressure variation is given by,
$P=\alpha V$
Where, $\alpha $ is some constant. We are supposed to find the molar heat capacity of the gas using this information.
So,
$P{{V}^{-1}}=\alpha $ …………………………. (1)
But we know that,
$P{{V}^{x}}=k$ ……………………………….. (2)
Where, k is a constant.
Then, by comparing (1) and (2), we get,
$x=-1$ …………………………….. (3)
We have the expression for molar specific heat capacity of a gas is given by,
$C={{C}_{V}}-\dfrac{R}{x-1}$ …………………………………. (4)
Where, ${{C}_{V}}$ is the specific heat at constant volume, R is the universal gas constant and x is the power at which volume of the gas is raised to in equation (2).
But we know that molar specific heat capacity at constant volume for an ideal gas will be given by,
${{C}_{V}}=\dfrac{d}{2}R$
Where, d is known to be the number of degrees of freedom. As the given gas is ideal diatomic gas, the specific heat capacity at constant volume will be given by,
${{C}_{V}}=\dfrac{5}{2}R$…………………………………….. (5)
So, we could now substitute (3) and (5) in equation (4) to get,
$C=\dfrac{5}{2}R-\dfrac{R}{-1-1}$
$\Rightarrow C=\dfrac{5}{2}R+\dfrac{R}{2}$
$\therefore C=3R$
Therefore, we found the molar heat capacity of the gas to be 3R.
Hence, option C is found to be the right answer.
Note:
Heat capacity could be simply defined as the ratio of the amount of heat energy that is supplied to the substance to the resultant temperature change. If we specified the amount of substance that is, if the number of moles were specified, we get a molar specific heat capacity of the substance. SI unit of molar heat capacity is $J/{}^\circ C.mol$.
Formula used:
Molar specific heat capacity,
$C={{C}_{V}}-\dfrac{R}{x-1}$
Molar specific heat capacity at constant volume,
${{C}_{V}}=\dfrac{d}{2}R$
Complete answer:
In the question, we are given an ideal diatomic gas whose pressure variation is given by,
$P=\alpha V$
Where, $\alpha $ is some constant. We are supposed to find the molar heat capacity of the gas using this information.
So,
$P{{V}^{-1}}=\alpha $ …………………………. (1)
But we know that,
$P{{V}^{x}}=k$ ……………………………….. (2)
Where, k is a constant.
Then, by comparing (1) and (2), we get,
$x=-1$ …………………………….. (3)
We have the expression for molar specific heat capacity of a gas is given by,
$C={{C}_{V}}-\dfrac{R}{x-1}$ …………………………………. (4)
Where, ${{C}_{V}}$ is the specific heat at constant volume, R is the universal gas constant and x is the power at which volume of the gas is raised to in equation (2).
But we know that molar specific heat capacity at constant volume for an ideal gas will be given by,
${{C}_{V}}=\dfrac{d}{2}R$
Where, d is known to be the number of degrees of freedom. As the given gas is ideal diatomic gas, the specific heat capacity at constant volume will be given by,
${{C}_{V}}=\dfrac{5}{2}R$…………………………………….. (5)
So, we could now substitute (3) and (5) in equation (4) to get,
$C=\dfrac{5}{2}R-\dfrac{R}{-1-1}$
$\Rightarrow C=\dfrac{5}{2}R+\dfrac{R}{2}$
$\therefore C=3R$
Therefore, we found the molar heat capacity of the gas to be 3R.
Hence, option C is found to be the right answer.
Note:
Heat capacity could be simply defined as the ratio of the amount of heat energy that is supplied to the substance to the resultant temperature change. If we specified the amount of substance that is, if the number of moles were specified, we get a molar specific heat capacity of the substance. SI unit of molar heat capacity is $J/{}^\circ C.mol$.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE