Answer
Verified
390k+ views
Hint:In an isothermal process the temperature of the reaction is kept constant and the P-T or V-T curve is straight parallel to the T axis. For an isobaric process the pressure of the reaction is kept constant and the P-V or P-T curve is straight parallel to the P axis.
Formula used:
Boyle’s law for ideal gas is given by,
\[PV = k\]
where \[P\] is the pressure of the gas, \[V\]is the volume of the gas and \[k\]is constant.
Charles’s law for ideal gas is given by,
\[V = kT\]
where, \[V\] is the volume of the gas, \[T\] is the absolute temperature of the gas and \[k\]is constant.
Complete step by step answer:
We know that in an isothermal process the temperature of the reaction is kept constant while other parameters of the equation of state vary .So, for an isothermal process the P-T or V-T curve is straight parallel to the T axis. Here, it is expanded to keep the temperature constant. So, from Boyle’s law we can get the final pressure as, \[{P_0}{V_0} = {P_2}2{V_0}\] when, \[T = k\] is constant.
\[{P_2} = \dfrac{{{P_0}}}{2}\]
In the second step the pressure is kept constant and we know for an isobaric process the pressure of the reaction is kept constant while other parameters of the equation of state vary. So, the P-V or P-T curve is straight parallel to the P axis. So, from Charles law we can get final temperature in the process as, \[\dfrac{{2{V_0}}}{{{T_0}}} = \dfrac{{{V_0}}}{{2{T_2}}}\] when \[P = k\] is constant.
\[{T_2} = \dfrac{{{T_0}}}{4}\]
In the third step the \[P \propto V\] so P-V curve is parabolic in this process so coming back to the initial state will be a parabolic path in the P-V curve. Since, \[P \propto V\] from ideal gas relation we can write \[P \propto \dfrac{T}{P}\] .
\[{P^2} \propto T\]
So, the state parameter of the gas changes as,
\[{P_0},{V_0},{T_0}\xrightarrow[{process}]{{isothermal}}\dfrac{{{P_0}}}{2},2{V_0},{T_0}\xrightarrow[{process}]{{isobaric}}\dfrac{{{P_0}}}{2},\dfrac{{{V_0}}}{2},\dfrac{{{T_0}}}{4}\xrightarrow{{P \propto V}}{P_0},{V_0},{T_0}\]
So, the P-T curve can be drawn as,
Hence, option C is the correct answer.
Note:To draw the curve, always deduce the state parameters \[P,V,T\] first using the equation of states at the end of each process to mark the values in the curve. In adiabatic processes the total exchange of heat in the process is always zero. Adiabatic process follows the equation \[P{V^\gamma } = k\] where \[\gamma \]is the ratio of the molar specific heats i.e. the ratio of the molar specific heat at constant pressure to the molar specific heat at constant volume.
Formula used:
Boyle’s law for ideal gas is given by,
\[PV = k\]
where \[P\] is the pressure of the gas, \[V\]is the volume of the gas and \[k\]is constant.
Charles’s law for ideal gas is given by,
\[V = kT\]
where, \[V\] is the volume of the gas, \[T\] is the absolute temperature of the gas and \[k\]is constant.
Complete step by step answer:
We know that in an isothermal process the temperature of the reaction is kept constant while other parameters of the equation of state vary .So, for an isothermal process the P-T or V-T curve is straight parallel to the T axis. Here, it is expanded to keep the temperature constant. So, from Boyle’s law we can get the final pressure as, \[{P_0}{V_0} = {P_2}2{V_0}\] when, \[T = k\] is constant.
\[{P_2} = \dfrac{{{P_0}}}{2}\]
In the second step the pressure is kept constant and we know for an isobaric process the pressure of the reaction is kept constant while other parameters of the equation of state vary. So, the P-V or P-T curve is straight parallel to the P axis. So, from Charles law we can get final temperature in the process as, \[\dfrac{{2{V_0}}}{{{T_0}}} = \dfrac{{{V_0}}}{{2{T_2}}}\] when \[P = k\] is constant.
\[{T_2} = \dfrac{{{T_0}}}{4}\]
In the third step the \[P \propto V\] so P-V curve is parabolic in this process so coming back to the initial state will be a parabolic path in the P-V curve. Since, \[P \propto V\] from ideal gas relation we can write \[P \propto \dfrac{T}{P}\] .
\[{P^2} \propto T\]
So, the state parameter of the gas changes as,
\[{P_0},{V_0},{T_0}\xrightarrow[{process}]{{isothermal}}\dfrac{{{P_0}}}{2},2{V_0},{T_0}\xrightarrow[{process}]{{isobaric}}\dfrac{{{P_0}}}{2},\dfrac{{{V_0}}}{2},\dfrac{{{T_0}}}{4}\xrightarrow{{P \propto V}}{P_0},{V_0},{T_0}\]
So, the P-T curve can be drawn as,
Hence, option C is the correct answer.
Note:To draw the curve, always deduce the state parameters \[P,V,T\] first using the equation of states at the end of each process to mark the values in the curve. In adiabatic processes the total exchange of heat in the process is always zero. Adiabatic process follows the equation \[P{V^\gamma } = k\] where \[\gamma \]is the ratio of the molar specific heats i.e. the ratio of the molar specific heat at constant pressure to the molar specific heat at constant volume.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE