
One mole of ideal monatomic gas ($\gamma =$5/3) is mixed with one mole of diatomic gas ($\gamma=$7/5). $\gamma$ denotes the ratio of specific heat at constant pressure, to that at constant volume. Find $\gamma$ for the mixture.
A. 3/2
B. 23/15
C. 35/23
D. 4/3
Answer
560.1k+ views
Hint: The degrees of freedom for a monatomic gas is \[3\] and that for a diatomic gas is \[5\].
The ratio of specific heats \[\gamma \] for an ideal gas is
\[\gamma =1+\dfrac{2}{f}\]
Let \[{{N}_{1}}\] moles of an ideal gas with \[{{f}_{1}}\] degrees of freedom per molecule be mixed with \[{{N}_{2}}\] moles of another ideal gas with \[{{f}_{2}}\] degrees of freedom per molecule at a particular temperature. The ratio of specific heats \[\gamma \] for the mixture is
\[\gamma =\dfrac{{{N}_{1}}(2+{{f}_{1}})+{{N}_{2}}(2+{{f}_{2}})}{{{N}_{1}}{{f}_{1}}+{{N}_{2}}{{f}_{2}}}\]
Complete step by step answer:
For the monatomic gas,
Number of moles, \[{{N}_{1}}=1\]
\[\gamma =\dfrac{5}{3}\]
Calculate the degrees of freedom \[{{f}_{1}}\] of the monatomic gas by substituting the value of \[\gamma \] in the \[\gamma \]-\[f\] relation:
$
\dfrac{5}{3}=1+\dfrac{2}{{{f}_{1}}} \\ $
$\implies \dfrac{5}{3}-1=\dfrac{2}{{{f}_{1}}} \\ $
$\implies \dfrac{2}{3}=\dfrac{2}{{{f}_{1}}} \\ $
$\implies {{f}_{1}}=3 \\
$
For the diatomic gas,
Number of moles, \[{{N}_{2}}=1\]
\[\gamma =\dfrac{7}{5}\]
Calculate the degrees of freedom \[{{f}_{2}}\] of the monatomic gas by substituting the value of \[\gamma \] in the \[\gamma \]-\[f\] relation:
$ \dfrac{7}{5}=1+\dfrac{2}{{{f}_{2}}} \\ $
$\implies \dfrac{7}{5}-1=\dfrac{2}{{{f}_{2}}} \\ $
$\implies \dfrac{2}{5}=\dfrac{2}{{{f}_{2}}} \\ $
$\implies {{f}_{2}}=5 \\ $
Now, substituting the values of \[{{N}_{1}}\] ,\[{{N}_{2}}\]and \[{{f}_{1}}\] ,\[{{f}_{2}}\] in the formula for the ratio of specific heats \[\gamma \] for the mixture:
$\gamma =\dfrac{1(2+{{3}_{1}})+1(2+5)}{(1)(3)+(1)(5)}\\ $
$\implies \gamma =\dfrac{12}{8} \\ $
$\implies \gamma =\dfrac{3}{2} \\ $
So, the correct answer is “Option A”.
Additional Information:
In monatomic gases, the atoms are not bound to each other and free to move in the three dimensional space. So, they have 3 degrees of freedom (translational). Only noble gases are monatomic at standard temperature and pressure.
In diatomic gases, two atoms are bonded to each other by a rigid bond. They have 5 degrees of freedom (3 translational and 2 rotational). Hydrogen, oxygen, nitrogen, etc exist as diatomic molecules.
Note:
The ratio of specific heats is a constant independent of the temperature. In addition, the expression holds true only for ideal gas mixture.
The ratio of specific heats \[\gamma \] for an ideal gas is
\[\gamma =1+\dfrac{2}{f}\]
Let \[{{N}_{1}}\] moles of an ideal gas with \[{{f}_{1}}\] degrees of freedom per molecule be mixed with \[{{N}_{2}}\] moles of another ideal gas with \[{{f}_{2}}\] degrees of freedom per molecule at a particular temperature. The ratio of specific heats \[\gamma \] for the mixture is
\[\gamma =\dfrac{{{N}_{1}}(2+{{f}_{1}})+{{N}_{2}}(2+{{f}_{2}})}{{{N}_{1}}{{f}_{1}}+{{N}_{2}}{{f}_{2}}}\]
Complete step by step answer:
For the monatomic gas,
Number of moles, \[{{N}_{1}}=1\]
\[\gamma =\dfrac{5}{3}\]
Calculate the degrees of freedom \[{{f}_{1}}\] of the monatomic gas by substituting the value of \[\gamma \] in the \[\gamma \]-\[f\] relation:
$
\dfrac{5}{3}=1+\dfrac{2}{{{f}_{1}}} \\ $
$\implies \dfrac{5}{3}-1=\dfrac{2}{{{f}_{1}}} \\ $
$\implies \dfrac{2}{3}=\dfrac{2}{{{f}_{1}}} \\ $
$\implies {{f}_{1}}=3 \\
$
For the diatomic gas,
Number of moles, \[{{N}_{2}}=1\]
\[\gamma =\dfrac{7}{5}\]
Calculate the degrees of freedom \[{{f}_{2}}\] of the monatomic gas by substituting the value of \[\gamma \] in the \[\gamma \]-\[f\] relation:
$ \dfrac{7}{5}=1+\dfrac{2}{{{f}_{2}}} \\ $
$\implies \dfrac{7}{5}-1=\dfrac{2}{{{f}_{2}}} \\ $
$\implies \dfrac{2}{5}=\dfrac{2}{{{f}_{2}}} \\ $
$\implies {{f}_{2}}=5 \\ $
Now, substituting the values of \[{{N}_{1}}\] ,\[{{N}_{2}}\]and \[{{f}_{1}}\] ,\[{{f}_{2}}\] in the formula for the ratio of specific heats \[\gamma \] for the mixture:
$\gamma =\dfrac{1(2+{{3}_{1}})+1(2+5)}{(1)(3)+(1)(5)}\\ $
$\implies \gamma =\dfrac{12}{8} \\ $
$\implies \gamma =\dfrac{3}{2} \\ $
So, the correct answer is “Option A”.
Additional Information:
In monatomic gases, the atoms are not bound to each other and free to move in the three dimensional space. So, they have 3 degrees of freedom (translational). Only noble gases are monatomic at standard temperature and pressure.
In diatomic gases, two atoms are bonded to each other by a rigid bond. They have 5 degrees of freedom (3 translational and 2 rotational). Hydrogen, oxygen, nitrogen, etc exist as diatomic molecules.
Note:
The ratio of specific heats is a constant independent of the temperature. In addition, the expression holds true only for ideal gas mixture.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

State the laws of reflection of light

Name the metals and nonmetals in the first twenty class 11 chemistry CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

