One of the resonating structures of $SO_4^{ - 2}$ is as shown. Which set of formal charge on oxygen and bond order is correct?
(A) -0.5 and 1.5
(B) 1.5 and 3
(C) 2 and 3
(D) 1.5 and 1.5
Answer
Verified
468.3k+ views
Hint: To solve this question we should know the formula to calculate set formal charge and bond order as well as the theory behind it. The formal charge on oxygen in $SO_4^{ - 2}$ is equal to the formal charge on each oxygen and takes an average of all.
Complete step by step answer:
The formal charge is the number of charges on an atom in a molecule, under assumption that electrons in all bonds are equally shared irrespective of the relative electronegativity.
Formula of formal charges:
\[Formal{\text{ }}charge{\text{ }} = {\text{ }}number{\text{ }}of{\text{ }}valence{\text{ }}electron{\text{ }}in{\text{ }}free{\text{ }}atom{\text{ }} - {\text{ }}number{\text{ }}of{\text{ }}lone{\text{ }}pair{\text{ }}electrons{\text{ }} - {\text{ }}\dfrac{1}{2}number{\text{ }}of{\text{ }}bond{\text{ }}pair{\text{ }}electrons.\]
Carefully refer to the diagram, where each oxygen is numbered.
-The formal charges of oxygen 1:
\[Formal{\text{ }}charge{\text{ }} = {\text{ }}number{\text{ }}of{\text{ }}valence{\text{ }}electron{\text{ }}in{\text{ }}free{\text{ }}atom{\text{ }} - {\text{ }}number{\text{ }}of{\text{ }}lone{\text{ }}pair{\text{ }}electrons{\text{ }} - {\text{ }}\dfrac{1}{2}number{\text{ }}of{\text{ }}bond{\text{ }}pair{\text{ }}electrons.\]
= 6 - 4 - 2
= 0
-The formal charges of oxygen 2:
\[Formal{\text{ }}charge{\text{ }} = {\text{ }}number{\text{ }}of{\text{ }}valence{\text{ }}electron{\text{ }}in{\text{ }}free{\text{ }}atom{\text{ }} - {\text{ }}number{\text{ }}of{\text{ }}lone{\text{ }}pair{\text{ }}electrons{\text{ }} - {\text{ }}\dfrac{1}{2}number{\text{ }}of{\text{ }}bond{\text{ }}pair{\text{ }}electrons.\]
= 6 - 6 - 1
= -1
-The formal charges of oxygen 3:
\[Formal{\text{ }}charge{\text{ }} = {\text{ }}number{\text{ }}of{\text{ }}valence{\text{ }}electron{\text{ }}in{\text{ }}free{\text{ }}atom{\text{ }} - {\text{ }}number{\text{ }}of{\text{ }}lone{\text{ }}pair{\text{ }}electrons{\text{ }} - {\text{ }}\dfrac{1}{2}number{\text{ }}of{\text{ }}bond{\text{ }}pair{\text{ }}electrons.\]
= 6 - 4 - 2
= 0
-The formal charges of oxygen 4:
\[Formal{\text{ }}charge{\text{ }} = {\text{ }}number{\text{ }}of{\text{ }}valence{\text{ }}electron{\text{ }}in{\text{ }}free{\text{ }}atom{\text{ }} - {\text{ }}number{\text{ }}of{\text{ }}lone{\text{ }}pair{\text{ }}electrons{\text{ }} - {\text{ }}\dfrac{1}{2}number{\text{ }}of{\text{ }}bond{\text{ }}pair{\text{ }}electrons.\]
= 6 - 6 - 1
= -1
The total formal charges on oxygen in $SO_4^{ - 2}$ is:
\[Formal{\text{ }}charges{\text{ }}in{\text{ }}oxygen{\text{ }} = \;\;\dfrac{{sum{\text{ }}of{\text{ }}formal{\text{ }}charge{\text{ }}on{\text{ }}oxygen{\text{ }}1,2,3{\text{ }}and{\text{ }}4}}{{Total{\text{ }}number{\text{ }}of{\text{ }}oxygen}}\]
\[ = \dfrac{{0 + ( - 1) + 0 + ( - 1)}}{4}\]
= - 0.5
Thus, formal charge on $SO_4^{ - 2}$ is - 0.5
Bond order is the number of chemical bonds present between the pairs of atoms
\[bond{\text{ }}order = \dfrac{{number{\text{ }}of{\text{ }}bonds}}{{Total{\text{ }}number{\text{ }}of{\text{ }}atom{\text{ }}sharing{\text{ }}the{\text{ }}bond}}\]
\[ = \dfrac{6}{4}\]
= 1.5
So, the correct answer is “Option A”.
Note: Generally, Formula to calculate bond pair:
\[Bond{\text{ }}order{\text{ }} = \dfrac{1}{2}({N_b} - {N_a})\]
Where, ${N_b}$ = number of bonding electrons
${N_a}$ = number of antibonding electrons
But for compound that has resonating structures, then the formula will be
\[bond{\text{ }}order = \dfrac{{number{\text{ }}of{\text{ }}bonds}}{{Total{\text{ }}number{\text{ }}of{\text{ }}atom{\text{ }}sharing{\text{ }}the{\text{ }}bond}}\]
Complete step by step answer:
The formal charge is the number of charges on an atom in a molecule, under assumption that electrons in all bonds are equally shared irrespective of the relative electronegativity.
Formula of formal charges:
\[Formal{\text{ }}charge{\text{ }} = {\text{ }}number{\text{ }}of{\text{ }}valence{\text{ }}electron{\text{ }}in{\text{ }}free{\text{ }}atom{\text{ }} - {\text{ }}number{\text{ }}of{\text{ }}lone{\text{ }}pair{\text{ }}electrons{\text{ }} - {\text{ }}\dfrac{1}{2}number{\text{ }}of{\text{ }}bond{\text{ }}pair{\text{ }}electrons.\]
Carefully refer to the diagram, where each oxygen is numbered.
-The formal charges of oxygen 1:
\[Formal{\text{ }}charge{\text{ }} = {\text{ }}number{\text{ }}of{\text{ }}valence{\text{ }}electron{\text{ }}in{\text{ }}free{\text{ }}atom{\text{ }} - {\text{ }}number{\text{ }}of{\text{ }}lone{\text{ }}pair{\text{ }}electrons{\text{ }} - {\text{ }}\dfrac{1}{2}number{\text{ }}of{\text{ }}bond{\text{ }}pair{\text{ }}electrons.\]
= 6 - 4 - 2
= 0
-The formal charges of oxygen 2:
\[Formal{\text{ }}charge{\text{ }} = {\text{ }}number{\text{ }}of{\text{ }}valence{\text{ }}electron{\text{ }}in{\text{ }}free{\text{ }}atom{\text{ }} - {\text{ }}number{\text{ }}of{\text{ }}lone{\text{ }}pair{\text{ }}electrons{\text{ }} - {\text{ }}\dfrac{1}{2}number{\text{ }}of{\text{ }}bond{\text{ }}pair{\text{ }}electrons.\]
= 6 - 6 - 1
= -1
-The formal charges of oxygen 3:
\[Formal{\text{ }}charge{\text{ }} = {\text{ }}number{\text{ }}of{\text{ }}valence{\text{ }}electron{\text{ }}in{\text{ }}free{\text{ }}atom{\text{ }} - {\text{ }}number{\text{ }}of{\text{ }}lone{\text{ }}pair{\text{ }}electrons{\text{ }} - {\text{ }}\dfrac{1}{2}number{\text{ }}of{\text{ }}bond{\text{ }}pair{\text{ }}electrons.\]
= 6 - 4 - 2
= 0
-The formal charges of oxygen 4:
\[Formal{\text{ }}charge{\text{ }} = {\text{ }}number{\text{ }}of{\text{ }}valence{\text{ }}electron{\text{ }}in{\text{ }}free{\text{ }}atom{\text{ }} - {\text{ }}number{\text{ }}of{\text{ }}lone{\text{ }}pair{\text{ }}electrons{\text{ }} - {\text{ }}\dfrac{1}{2}number{\text{ }}of{\text{ }}bond{\text{ }}pair{\text{ }}electrons.\]
= 6 - 6 - 1
= -1
The total formal charges on oxygen in $SO_4^{ - 2}$ is:
\[Formal{\text{ }}charges{\text{ }}in{\text{ }}oxygen{\text{ }} = \;\;\dfrac{{sum{\text{ }}of{\text{ }}formal{\text{ }}charge{\text{ }}on{\text{ }}oxygen{\text{ }}1,2,3{\text{ }}and{\text{ }}4}}{{Total{\text{ }}number{\text{ }}of{\text{ }}oxygen}}\]
\[ = \dfrac{{0 + ( - 1) + 0 + ( - 1)}}{4}\]
= - 0.5
Thus, formal charge on $SO_4^{ - 2}$ is - 0.5
Bond order is the number of chemical bonds present between the pairs of atoms
\[bond{\text{ }}order = \dfrac{{number{\text{ }}of{\text{ }}bonds}}{{Total{\text{ }}number{\text{ }}of{\text{ }}atom{\text{ }}sharing{\text{ }}the{\text{ }}bond}}\]
\[ = \dfrac{6}{4}\]
= 1.5
So, the correct answer is “Option A”.
Note: Generally, Formula to calculate bond pair:
\[Bond{\text{ }}order{\text{ }} = \dfrac{1}{2}({N_b} - {N_a})\]
Where, ${N_b}$ = number of bonding electrons
${N_a}$ = number of antibonding electrons
But for compound that has resonating structures, then the formula will be
\[bond{\text{ }}order = \dfrac{{number{\text{ }}of{\text{ }}bonds}}{{Total{\text{ }}number{\text{ }}of{\text{ }}atom{\text{ }}sharing{\text{ }}the{\text{ }}bond}}\]
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE