Answer
Verified
430.5k+ views
Hint: Here, we will assume the required number to be some variable. We will first find the one fifth of the number and then subtract 4 from it and then equate it to 3 to get a linear equation. We will solve the equation further to get the required answer. A linear equation is an equation which has the highest degree of 1 and has only one solution.
Complete step-by-step solution:
Let the unknown number be \[x\].
According to the question, one fifth of \[x\] minus four gives three.
This means that we first have to take the one fifth of the unknown number, which in turn means that we have to multiply it by \[\dfrac{1}{5}\] or divide by \[5\].
On dividing \[x\] by five, we get \[\dfrac{x}{5}\].
Now, four has to be subtracted from the one fifth of the unknown number. On subtracting four from \[\dfrac{x}{5}\], we get \[\left( {\dfrac{x}{5} - 4} \right)\].
We will now equate the above expression to 3, so that we can write the mathematical equation as:
\[\dfrac{x}{5} - 4 = 3\]
Adding \[4\] on both the sides, we get
\[ \Rightarrow \dfrac{x}{5} = 7\]
On multiplying both the sides by \[5\], we get
\[ \Rightarrow x = 35\]
Therefore, the value of the required number is 35.
Note:
While converting a statement into a mathematical expression, we have to take proper care of the BODMAS rule. We might misinterpret the given statement as one-fifth of the number obtained by subtracting four from the unknown number is equal to three, and generate the mathematical equation as \[\dfrac{{x - 4}}{5} = 3\]. Here comes the significance of the BODMAS rule according to which the division must be performed before the subtraction, and hence the equation is \[\dfrac{x}{5} - 4 = 3\].
Complete step-by-step solution:
Let the unknown number be \[x\].
According to the question, one fifth of \[x\] minus four gives three.
This means that we first have to take the one fifth of the unknown number, which in turn means that we have to multiply it by \[\dfrac{1}{5}\] or divide by \[5\].
On dividing \[x\] by five, we get \[\dfrac{x}{5}\].
Now, four has to be subtracted from the one fifth of the unknown number. On subtracting four from \[\dfrac{x}{5}\], we get \[\left( {\dfrac{x}{5} - 4} \right)\].
We will now equate the above expression to 3, so that we can write the mathematical equation as:
\[\dfrac{x}{5} - 4 = 3\]
Adding \[4\] on both the sides, we get
\[ \Rightarrow \dfrac{x}{5} = 7\]
On multiplying both the sides by \[5\], we get
\[ \Rightarrow x = 35\]
Therefore, the value of the required number is 35.
Note:
While converting a statement into a mathematical expression, we have to take proper care of the BODMAS rule. We might misinterpret the given statement as one-fifth of the number obtained by subtracting four from the unknown number is equal to three, and generate the mathematical equation as \[\dfrac{{x - 4}}{5} = 3\]. Here comes the significance of the BODMAS rule according to which the division must be performed before the subtraction, and hence the equation is \[\dfrac{x}{5} - 4 = 3\].
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE